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Abstract

This thesis systematically examines, develops and refines the basic procedures of acoustic reflec-

tion imaging logging. The reflections derived from the energy that leaks away from the borehole

and is reflected back to the receivers after interacting with the structures outside the borehole, can

be extracted from the full waveforms recorded by the downhole receivers. A three-dimensional

finite difference method based on the first order velocity and stress hyperbolic equations is then de-

veloped to simulate wave propagation in both isotropic and anisotropic media. A hybrid-perfectly

matched layer absorbing boundary condition is proposed to mitigate the artificial reflections. Fi-

nally, the borehole reverse time migration is developed to image the near borehole structures.

The reflection extraction from the borehole full waveforms is not straightforward. Under acous-

tic well logging conditions, reflected wave signals used in sonic reflection logging are generally

submerged in the full waveform records, hidden by the dominant direct waves (direct P- and S-

waves, and the Stoneley wave). It is critical, therefore, to effectively extract the reflection sig-

nals from the acoustic full waveforms in acoustic reflection well logging data processing. The

Karhunen-Loève transformations combined with a band limiting filter is used to extract reflec-

tions of interest out of dominant direct waves. Under the assumption that large energy (squared-

amplitude) differences exist between each wave component, the direct Stoneley wave, S-wave and

the P-wave are eliminated sequentially by subtracting the most significant principle components,

after which the remaining signal is seen to be dominated by reflected events. The extracted re-

flections can then be used in migration so as to get a clear image of the structures outside of the

borehole.

During wavefield modeling, an issue faced by finite difference methods, which has particular

importance in borehole applications, is the mitigation of artificial reflections from computational

boundaries. This computational boundary artificial reflection problem has been a persistent topic

in the literature of wave modelling, no complete solution has yet been found. To address this, a
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hybrid perfectly matched layer methodology is introduced and discussed in the context of standard

perfectly matched layer, convolutional perfectly matched layer, and multiaxial perfectly matched

layer methods, and their abilities relative to the suppression of artificial reflections are compared.

The method is a hybrid in the sense of combining aspects of the convolutional perfectly matched

layer and the multiaxial perfectly matched layer schemes.

The fact that waves can impinge on the borehole instrument from all azimuths is an important

source of ambiguity. This azimuthal ambiguity has been an issue ever since the beginning of bore-

hole acoustic reflection imaging. The data (which actually may be from every possible direction of

underneath formations) is considered in standard imaging and processing to have come from one

direction. The 4-component dipole acoustic well logging technique is designed to solve the az-

imuth ambiguity problem by analyzing the azimuthal information contained in the recorded shear

wave signals. Thereafter, standard migration procedure can be applied to get the imaging result. In

this thesis, the 3D reverse time migration in the borehole environment is proposed and applied in

the simulated data set with a similar source and receiver system as sonic scanner tool developed by

Schlumberger. The staggered-grid finite difference RTM performs perfectly in fluid-solid bound-

ary with a source located in the fluid-filled borehole. The imaging result shows the directional

information of the structures outside the borehole can be directly obtained.



Preface

The PhD thesis is written in manuscript-based format based on two published papers and two

manuscript papers that are ready to be submitted. I am the first author of these papers. All of these

work is carried out under the supervision of Dr. Kris Innanen of CREWES project at University

of Calgary and Dr.Tao of Petroleum Institute (UAE). Dr. Kris Innanen was involved in all of my

research projects as the supervisory author.These papers are republished in this thesis with the

permission from the co-authors.

Chapter 2 and 3 are combined as a paper published as: Junxiao Li, Kristopher A. Innanen,

Guo Tao, Kuo Zhang, and Laurence Lines (2017). Wavefield simulation of 3D borehole dipole

radiation. Geophysics, 82(3), D155-D169.

A version of chapter 4 is going to be submitted for publication: Junxiao Li, Kristopher A.

Innanen, Guo Tao, A 3D pseudo-spectral method for SH wave simulation.

A version of chapter 5 has been published as: Junxiao Li, Kristopher A. Innanen, and Guo

Tao (2017). Extraction of reflected events from sonic-log waveforms using the Karhunen-Love

transform. Geophysics, 82(5), D265-D277.

A version of chapter 6 is going to be submitted for publication as: Junxiao Li, Kristopher

Innanen, Laurence Lines, and Guo Tao. Resolving azimuthal ambiguity in borehole imaging using

a 3D borehole RTM scheme. And the borehole RTM used in this chapter has been published as:

Li, J., Tao, G., Zhang, K., Wang, B. and Wang, H. (2014). An effective data processing flow

for the acoustic reflection image logging. Geophysical Prospecting, 62: 530-539. I am the lead

investigator and the manuscript composer for this paper.

iv



Acknowledgements

After finishing the last undergraduate course of Physics when I was a sophomore, I sent a message

to all of my friends and relatives to celebrate that Physics would never appear in my life again.

Guess what happened in the next semester? I have to choose one as my major from applied

geophysics and petrophysics! I had no idea but to choose applied geophysics. And now, I am in

the last year as a PhD candidate in geophysics, which becomes the one that I will dedicate the rest

of my whole life to.

In the course of this work, I would like to thank my supervisor Kris Innanen for his guidance

and support. I benefited a lot from his insight into a wide range of problems and his philosophy

of solving problems. I would also like to thank my supervisor Guo Tao when I was in China

University of Petroleum-Beijing and my co-supervisor Laurence R. Lines in University of Calgary.

I am very grateful to have three of them as my supervisors. This dissertation owes much to their

wisdom, guidance, and encouragement.

I would like to thank the CREWES staff, past and present students who create a very stimulat-

ing research environment. They are Laura Baird, Kevin Hall, Kevin Bertram, Helen Isaac, Emma

Lv, Winne Ajiduah, Tianci Cui and so on. I will always cherish the discussions with Joe Wang,

Raul Cova, Wenyong Pan, Shahpoor Moradi, Sergio Romahn, Marcelo Guarido de Andrade and

Kiki Xu. Particularly, I would single out Pat Daley to thank his help to provide proofreading and

discussion during many midnights, thanks Laura for your candies by the way. I also appreciate the

people who have communicated with me on my publications, by email or in person.

I have also benefited from the encouragement and support of a great number of people at China

National Petroleum Corporation(CNPC), Shell China, The Petroleum Institute in Abu Dhabi and

SINOPEC Beijing. Thank one of the anonymous sponsors for thr use of acoustic logging data.

Many thanks go to the fellow Chinese at CREWES, Huaizheng Chen, Tiansheng Chen, Lei

Yang Yu Geng, Jian Sun and so on for their friendship and help. I really enjoyed the time we spent

v



together: Chinese food, hot pot, jokes...

CREWES and the University of Calgary have provided financial support for my Ph.D program.

Finally, I would like to thank my Mom and Dad for their endless support and encouragement.

Thank my wife Cindy Wang for her love and understanding.



Dedication

To my parents on the other side of the ocean and to my wife Cindy Wang.

vii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Acoustic reflection imaging . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Borehole wavefield simulation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Borehole reflection extraction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Borehole reverse time migration . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Finite difference method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Staggered-grid finite difference approximation . . . . . . . . . . . . . . . . . . . . 12
2.4 Absorbing boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Perfectly matched layer (PML) . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Convolutional perfectly matched layer (C-PML) . . . . . . . . . . . . . . 16
2.4.3 Multiaxial perfectly matched layer (M-PML) . . . . . . . . . . . . . . . . 18
2.4.4 Hybrid perfectly matched layer (H-PML) . . . . . . . . . . . . . . . . . . 18

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Wavefield simulation for a dipole source . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Numerical simulation of waves from a dipole source in isotropic media . . . . . . 26
3.3 Numerical simulation of waves from a dipole source in anisotropic media . . . . . 38
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 A 3D pseudo-spectral method for SH wave simulation . . . . . . . . . . . . . . . 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 First-order SH wave equations in VTI media . . . . . . . . . . . . . . . . . . . . . 48
4.3 Staggered-grid Fourier pseudo-spectral derivatives . . . . . . . . . . . . . . . . . . 51
4.4 H-PML boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 Two-layer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.2 3D thrust fault anisotropic model . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5 Reflection extraction from sonic log waveforms . . . . . . . . . . . . . . . . . . . 66
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Karhunen-Loeve(KL) Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



5.3 Wave Separation Using KL Transformation . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 Synthetic testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 The determination of the k value in the KL transform . . . . . . . . . . . . 76

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.1 Laboratory data example . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2 Field data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6 Azimuth ambiguity elimination for borehole imaging using 3D borehole RTM

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Borehole reverse-time migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Forward and backward wavefield propagation . . . . . . . . . . . . . . . . . . . . 95
6.4 Imaging condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Simulation and Comparison with 2D borehole RTM . . . . . . . . . . . . . . . . . 97
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7 Summary and Future study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Future study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

ix



List of Tables

2.1 The parameters for 3D modeling of wavefield propogation. . . . . . . . . . . . . . 24

5.1 Parameters of fault-like model outside the borehole . . . . . . . . . . . . . . . . . 70
5.2 Parameters of the borehole fluid and formations outside borehole. . . . . . . . . . 78
5.3 Parameters of a three-layer model outside the borehole. . . . . . . . . . . . . . . . 89

x



List of Figures

2.1 Schematic illustration of the staggered-grid discretization for different compo-
nents. The normal stress components are located in the middle of the grid; velocity
components are set in 1/2 of the grid points towards corresponding directions; and
shear stress components are located in their corresponding 1/2 grid points. . . . . . 14

2.2 Perfectly-matched layers (PML) outside the physical domain. . . . . . . . . . . . 17
2.3 Snapshots of the monopole source wavefield propagation in both isotropic media

(top row) and anisotropic media (bottom row) with C-PML absorbing layers. For
the isotropic medium, the elastic constants are in matrix Ciso , shown in equation
(2.18). The recording time is 0.7 ms. For the anisotropic medium, the elastic
constants are in matrix Cani , shown in equation (2.18). The recording time is 1.6 ms. 19

2.4 Snapshots of the monopole source wavefield propagation in both isotropic media
(top row) and anisotropic media (bottom row) with M-PML absorbing layers.For
the isotropic medium, the elastic constants are in matrix Ciso , shown in equation
(2.18). The recording time is 0.7 ms. For the anisotropic medium, the elastic
constants are in matrix Cani , shown in equation (2.18). The recording time is 1.6 ms. 20

2.5 Snapshots of the monopole source wavefield propagation in both isotropic media
(top row) and anisotropic media (bottom row) with H-PML absorbing layers.For
the isotropic medium, the elastic constants are in matrix Ciso , shown in equation
(2.18). The recording time is 0.7 ms. For the anisotropic medium, the elastic
constants are in matrix Cani , shown in equation (2.18). The recording time is 1.6 ms. 20

2.6 Synthetic seismograms in both isotropic((a), (b), (c)) and anisotropic((d), (e), (f))
media using C-PML, M-PML and H-PML. The seismograms indicate that the C-
PML and H-PML perform better than the M-PML in isotropic medium. However,
the M-PML and H-PML perform better than the C-PML. The seismograms of C-
PML suffer severely from artificial boundary reflections, shown in red area of (d). . 22

2.7 A two-layer model and its reflection profiles when C-PML, M-PML and H-PML
are implemented, respectively. The seismograms indicate that both the C-PML
and M-PML suffer from boundary reflections, shown in red areas of C-PML and
M-PML results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Comparisons of full recorded waveform data calculated using C-PML (blue curve),
M-PML (black curve) and H-PML (red curve) for (a)-(a1) isotropic, (b)-(b2) anisotropic
and (c)-(c2) two-layer media, respectively. The artificial reflections are dominant
in both anisotropic and two-layer medium when C-PML is used. The M-PML per-
forms better than C-PML in both media, however, yet some minor artifacts are still
detected in isotropic medium. Hardly can artifacts be detected when H-PML is
applied for both isotropic and anisotropic media. . . . . . . . . . . . . . . . . . . 23

2.9 Snapshots of wave propagation in 3D medium. . . . . . . . . . . . . . . . . . . . 24

3.1 The 3D profile of the isotropic model with dipole source and quadrupole receivers.
A dipole source is oriented along the x-axis of the coordinate system defined by
the tool. The reflector is parallel to and 3m away from the borehole. . . . . . . . . 29

xi



3.2 Displacement of receivers around the tool. The angle φ between the dipole and the
reflector interface varies between 0◦-90◦ with an interval of 15◦. . . . . . . . . . . 29

3.3 (a) Received reflections of receiver 1 (red) and receiver 3 (blue); and (b) Received
reflections of receiver 2 (red) and receiver 4 (blue). The value in Y axis denotes
the receiver number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 (a) and (b) Received reflections when φ is 30◦; (c) and (d) Received reflections
when φ is 60◦ . The value in Y axis denotes the receiver number. . . . . . . . . . . 31

3.5 (a) Received reflections of receiver 1 (red) and receiver 3 (blue); (b) Received
reflections of receiver 2 (red) and receiver 4 (blue) . The value in Y axis denotes
the receiver number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Full waveforms of R1 with an offset of (a) 1.5 m, (b) 2.25 m, (c) 3.0 m and (d)
3.75 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 (a) Reflected waves of R1 with an offset of 1.5 m; (b) Reflected waves received by
R1 with an offset of 2.25 m; (c) Reflected waves received by R1 with an offset of
3.0 m; (d) Reflected waves received by R1 with an offset of 3.75 m. . . . . . . . . 34

3.8 (a) Full waveforms of R2 with an offset of 1.5 m; (b) Full waveforms received by
R2 with an offset of 2.25 m; (c) Full waveforms received by R2 with an offset of
3.0 m; (d) Full waveforms received by R2 with an offset of 3.75 m. . . . . . . . . . 35

3.9 (a) Reflected waves of R2 with an offset of 1.5 m; (b) Reflected waves received by
R2 with an offset of 2.25 m; (c) Reflected waves received by R2 with an offset of
3.0 m; (d) Reflected waves received by R2 with an offset of 3.75 m. . . . . . . . . 35

3.10 Cross-plots of maximum amplitude versus receiver offset. The value in X axis
denotes the offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 S wave emission, reflection and transmission. . . . . . . . . . . . . . . . . . . . . 37
3.12 Cross-plot of normalized amplitude versus different reflection angles. . . . . . . . 39
3.13 Displacement of 8 receivers around tool. . . . . . . . . . . . . . . . . . . . . . . . 39
3.14 Received reflections for 8 evenly spaced receivers when the strike of reflector is

parallel to the radiation of the directional source. The value in Y axis denotes the
receiver number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.15 Received reflections for 8 evenly spaced receivers when there is a 30◦ angle differ-
ence between the strike of reflector and the radiation of the directional source. The
value in Y axis denotes the receiver number. . . . . . . . . . . . . . . . . . . . . . 41

3.16 Received reflections for 8 evenly spaced receivers when there is a 60◦ angle differ-
ence between the strike of reflector and the radiation of the directional source. The
value in Y axis denotes the receiver number. . . . . . . . . . . . . . . . . . . . . . 42

3.17 Received reflections for 8 evenly spaced receivers when there is a 90◦ angle differ-
ence between the strike of reflector and the radiation of the directional source. The
value in Y axis denotes the receiver number. . . . . . . . . . . . . . . . . . . . . . 43

3.18 Cross-plot of normalized amplitude versus different receiver offsets in VTI medium. 43
3.19 Cross-plot of normalized amplitude versus different reflection angles in VTI medium.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xii



4.1 The 3D layered anisotropic model containing displacement wavefield snapshots in
cross-sectional planes; in each panel propagation time progresses, starting at 0.2s
and ending at 0.35s. The left-hand layer of the model (y< 600m) is a VTI medium.
The right-hand layer (y > 600m) of this model is purely isotropic. . . . . . . . . . 57

4.2 SH wavefield snapshots computed using the PSTD staggered-grid method with
H-PML. Left to right: snapshot times 0.2s to 0.35s. Top row: x-y plane, lateral
component; bottom row: x-z plane, vertical component. . . . . . . . . . . . . . . . 58

4.3 SH wavefield snapshots computed using the second order PSTD method with a
sponge absorbing boundary. Left to right: snapshot times 0.2s to 0.35s. Top row:
x-y plane, lateral component; bottom row: x-z plane, vertical component. . . . . . . 59

4.4 The 2-layered model with source-receiver positioning. The blue surface is the
physical interface. A, B, C and D denote the receiver locations. . . . . . . . . . . . 60

4.5 Trace comparisons between the conventional (blue) and proposed (red) PSTD
methods, recorded at receiver positions A-D. Artifacts are indicated with dashed
boxes/ovals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Trace comparisons between the staggered-grid FD and proposed PSTD methods,
recorded at receiver positions A-D. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Snapshots for SH propagation in x-z plane (z-component). . . . . . . . . . . . . . 63
4.7 Snapshots for SH wave propagation in the thrust fault model with ∆t = 10µs. The

dipole source is composed of two monopoles which are positioned at (120 m, 480
m, 675 m) and (130 m, 480 m, 675 m). . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Snapshots for SH propagation in in x-z plane (x-component). . . . . . . . . . . . . 65

5.1 Synthetic model: Blue area is the borehole. Yellow and red areas are two forma-
tions with different properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Received full waveform when the dip angle is 45 degree (Left) and theoretical
refection signals by subtracting the full waveform of this synthetic model from
that of a model without the interface (Right). The data is received by the first
receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 (a) Waveforms received by the receiver when there is no reflected signals. (b)
Full waveforms recorded by the receiver when reflections are present. (c) Four
dominant normalized eigenvectors of covariance matrix calculated from windowed
waveforms. The processing time window is from 0ms to 5ms. The eigenvalues of
each eigenvector are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 First principal component of the raw data (Left) and residuals after principal com-
ponent has been removed (Right). . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Four dominant eigenvectors of the residuals after principal component is removed(Left)
and the reconstructed P-wave component extracted using the first eigenvector (Right) 75

5.6 Reflections extracted using MSTC (Left) and KL transform (Right). . . . . . . . . 76
5.7 Comparison of the direct waveforms (red), true reflections (black) and reflections

from KL transform (blue) at recording depths from 3.5 m (a), 5.75 m (b), 8 m (c)
and 9.5 m (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.8 RTM results when (a)reflections extracted by the KL transform method are used
and when (b)the reflections extracted by the MSTC method are used. . . . . . . . . 77

xiii



5.9 Figure (a) illustrates sonic waveform propagation in a borehole. In fast formation,
the wave modes received by the receivers in the borehole are P-head wave, head-
Shear wave, direct wave and Stoneley wave as a function of time. Figure (b) shows
the generation of P-head wave, which is composed of Pf P1Pf . . . . . . . . . . . . 80

5.10 P- and S-wave reflection and transmission coefficients vs. angle of incidence for
(a) fast formation and (b) slow formation. . . . . . . . . . . . . . . . . . . . . . . 81

5.11 P- and S-wave reflection and transmission coefficients vs. angle of incidence for
(a) fast formation and (b) slow formation. . . . . . . . . . . . . . . . . . . . . . . 81

5.12 Water tank model with a size of 15m× 50m. The source-receiver spacing of the
sonic tool in the tank is 5.3m. A roughly 2m long steel pad is located 3m away
from the tool with a dip angle of 20◦ towards the vertical direction. . . . . . . . . . 82

5.13 Received full waveform of the water tank data (Left) and reflection signals using
MSTC (Right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.14 First principal component of the raw data (Left) and residuals after principal com-
ponent has been removed (Right). . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.15 P wave component reconstructed using the first eigenvector (Left) and residuals
after secondary component has been removed (Right). . . . . . . . . . . . . . . . . 84

5.16 Imaging results of reflections from KL transform (Left) and from MSTC (Right). . 85
5.17 The raw waveforms recorded by a receiver (Left); the residuals after the Stoneley

direct wave is removed (Right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.18 (a) Full waveforms after Stoneley signals (direct and reflected Stoneley) are miti-

gated; (b) reflections extracted using KL transform; (c) the upgoing reflections by
the common-receiver gather and (d) the downgoing reflections by the common-
source gather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.19 Up going image (Left) and down going image (Right) . . . . . . . . . . . . . . . . 87
5.20 Sonic waveform extraction from a three-layer model, the adjacent layer outside the

borehole is homogeneous. (a) Source-receiver distribution in a three-layer model.
(b) and (c) are the full waveforms and true reflections. (d)-(f) show the procedure
of reflections extraction using KL transform . . . . . . . . . . . . . . . . . . . . . 89

5.21 Sonic waveform extraction from a three-layer model, the adjacent formation out-
side the borehole is a vertically three-layer formation. (a) shows a schematic pic-
ture of this model, the source-receiver distribution is the same as Figure 5.20a. (b)
and (c) are the full waveforms and true reflections. (d)-(f) show the procedure of
reflections extraction using KL transform . . . . . . . . . . . . . . . . . . . . . . 90

5.22 Sonic waveform extraction from a three-layer model, the adjacent formation out-
side the borehole is a vertically laminated formation with the VP and VS linearly
increasing with the depth. (a) shows a schematic picture of this model, the source-
receiver distribution is the same as Figure 5.20a. (b) and (c) are the Full waveforms
and True reflections. (d) shows the reflections directed extracted by KL trans-
form, the reflections are severely contaminated by unwanted signals. (e)-(f) show
the procedure of reflections extraction using KL transform with primary modes
straightened . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xiv



6.1 The synthetic model of a horizontal well filled with water (blue) horizontally pen-
etrates into a fast formation (red). A dip interface locates on the top of the model.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 The reflection signals of the synthetic model: (a) The reflections recorded by the

upper array of receivers; (b) the reflections from the lower array of receivers. . . . . 98
6.3 The synthetic model of a horizontal well filled with water (blue) horizontally pen-

etrates into a fast formation (red). . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4 The reflection signals of the synthetic model:The reflections recorded by the upper

array of receivers (a) and lower array of receivers (b). . . . . . . . . . . . . . . . . 99
6.5 Imaging result of the upper interface model, shown in Figure 6.5. The upper

structure is the real interface, however, the lower structure is the artificial reflector
caused by azimuthal ambiguity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Imaging result of the model with interfaces on both sides of the well. The artificial
reflectors caused by azimuthal ambiguity are present both in upper and lower parts
of the well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 The 3D profile of the VTI model with a dipole source and 8 evenly spaced hy-
drophones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 A cross-section profile of the 3D model in x-z plane. . . . . . . . . . . . . . . . . 102
6.9 The snapshots of the forward wavefield propagation in x-z plane from borehole

fluid to the formation outside the borehole with the time increasing from 1.5 ms to
5.25 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.10 The imaging result for one shot of the 3D model. . . . . . . . . . . . . . . . . . . 104
6.11 The 3D profile of the VTI model with a monopole source and 8 evenly spaced

hydrophones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.12 A cross-section profile of the 3D model in x-z plane. . . . . . . . . . . . . . . . . 104
6.13 The imaging result for one shot of the 3D model. . . . . . . . . . . . . . . . . . . 105

xv



List of Symbols, Abbreviations and Nomenclature

Symbols

Symbol Definition

ρ Formation density

u j Displacement vector in jth direction

σi j,εkl Stress and strain tensor, i,j,k,l=1,2,3(or, x,y,z)

σi j, j derivative of stress tensor in jth direction

ci jkl elastic stiffness tensor
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Chapter 1

Introduction

1.1 Background

The target of oil and gas exploration has now been transferred from the conventional, large oil and

gas reservoirs to unconventional small and subtle fractured reservoirs. However, due to the limited

resolution, surface seismic methods have difficulty delineating these targets. New geophysical

methods that can characterize these reservoirs with higher resolution are therefore of significant

interest. The lateral depth of investigation by conventional acoustic well logging can only reach up

to 0.6m outside the borehole wall. Recent studies have revealed the potential of acoustic reflection

imaging logging in detecting near borehole geology structures, whose lateral detection depth can

reach up to 10-20 m away from the borehole. Nevertheless, most research on the subject of acoustic

reflection imaging logging are still based on the assumption of isotropy and are framed for two-

dimensional media. The main objective of this thesis is to develop a theory of 3D anisotropic

acoustic reflection imaging techniques, from 3D borehole wavefield forward modeling, wavefield

extraction to migration and imaging.

1.1.1 Acoustic reflection imaging

Acoustic reflection imaging logging, originally described by Hornby (1989), who presented data

processing and imaging methods for the sonic tool BARS (Borehole Acoustic Reflection Survey),

interrogates reflections from near borehole fractures and microstructures caused by incident leaky

waves. By analyzing received waveforms, the structure information of nearby subtle and fractured

reservoirs can be obtained. In the ensuing years, monopole acoustic imaging has been reported

to successfully delineate near-borehole structures(Fortin et al., 1991; Coates et al., 2000; Li et al.,

2002). However, the omni-directional monopole acoustic prototype only measures acoustic pres-
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sure and is insensitive to reflector azimuth. To resolve this directional ambiguity, dipole acoustic

reflection imaging has been developed (Tang et al., 2003; Tang, 2004; Tang and Patterson, 2009;

Bolshakov et al., 2011). In dipole methods, dispersive flexure waves, whose velocity at the cutoff

frequency equals the shear wave velocity, are analyzed. These data, given the deviation angle of

well bore and tool azimuthal angle, can determine the azimuth of the structures outside the bore

hole after migration(Tang et al., 2003).

In research involving acoustic reflection imaging tools, the acoustic reflection logging proto-

type EVA (Evaluation of Velocity and Attenuation) (Fortin et al., 1991) was designed in 1982. The

borehole Acoustic Reflection Survey (BARS) (Esmersoy et al., 1998) and Sonic Scanner (Pistre

et al., 2005) were then developed by Schlumberger. In 2007, Bohai Drilling Corporation of China

Petroleum developed an acoustic reflection imaging tool with a closest spacing of 10.6m and a

certain degree of phase steering (Chai et al., 2009). The new design makes it easier to extract the

reflection signals from the borehole mode waves.

1.1.2 Borehole wavefield simulation

For wavefield simulation in fluid-filled borehole environment, the finite difference (FD) method

is widely used. The staggered-grid FD method was first proposed for seismology by Madariaga

(1976), and further developed by Virieux (1986) who used the methodology to simulate P-SV wave

modes, and by Levander (1988), who introduced a fourth-order staggered grid formulation. Ac-

cording to Virieux (1986), staggered-grid finite difference methods are suitable for numerical wave

propagation in media with fluid-solid interfaces without any special treatment of the discontinu-

ity. De Basabe and Sen (2015) illustrate detailed comparisons between standard grid FD method

and staggered-grid FD method. In their paper, grid-dispersion analysis shows the standard-grid

FD method can yield results almost as accurate as staggered-grid FD method, but at the cost of

twice as many nodes in each direction. The numerical experiments show that the standard-grid FD

method yields the largest errors in most cases considered, whereas, the 4th order staggered-grid FD

method reproduces waveforms with good or excellent accuracy. Therefore, this approach has been
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applied to borehole acoustic well logging in which the source is deployed in a fluid-filled borehole

(Mallan et al., 2009). An issue faced by FD methods, which has particular importance in borehole

applications, is the mitigation of artificial reflections from computational boundaries. Mitigation

approaches include sponge zones (Cerjan et al., 1985; Sochacki et al., 1987), optimized conditions

(Peng and Toksöz, 1995), eigenvalue decomposition (Dong et al., 2005), continued-fraction ab-

sorbing conditions (Guddati and Lim, 2006), absorbing conditions on spherical contours (Grote,

2000), and asymptotic local or nonlocal operators (Clayton and Engquist, 1980; Givoli, 1991;

Hagstrom and Hariharan, 1998). No complete solution has yet been found, however, and certain

artifacts, e.g., boundary reflections at grazing incidence, persist to some degree in every available

technique. Furthermore, each of these methods introduces significant additional computational

expense to the processing flow. For wavefield simulation in deviated wells, a 2.5-D FD code to

model monopole and dipole acoustic logs in a deviated borehole penetrating an anisotropic forma-

tion is proposed by Leslie and Randall (1992), which greatly saves the cost of time and memory

yet requires the media to be homogeneous in the direction of borehole extending. Sinha et al.

(2006) used a 3-D cylindrical FD method to study the influence of a sonic tool on wave propaga-

tion in anisotropic formations. However, the detailed wavefield simulation is not included in his

paper. In 3D wavefield simulation, in order to make it practical for the FD staggered-grid method

to be applied in the high deviated acoustic reflection well logging, the influence of the stair-like

grids around the borehole due to the model grid dividing should also be carefully tackled with.

Especially when the grid size is comparatively large enough, the waveform simulation results will

greatly suffer from these corresponding bogus waves derived from the stair-like grids.

1.1.3 Borehole reflection extraction

One issue of acoustic reflection imaging logging is the reflection wave extraction. Under acoustic

well logging conditions, the borehole constitutes a wave guide which traps the energy transmitted

by the acoustic source in the borehole and generates the so-called mode waves such as P and

S head waves, pseudo Rayleigh wave, and Stoneley wave for a monopole tool. Only a small
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portion of the emitted energy can leak from the borehole and propagate in the outside formation,

which can be reflected back to receivers when formation structures such as faults and fractures are

present. These reflected wave signals are difficult to detect in the full waveform records because

of the much larger amplitudes of the dominant mode waves. It is critical, therefore, to effectively

extract the reflection signals from the acoustic full waveforms in acoustic reflection well logging

data processing. Hornby (1989) used f-k filter to extract reflection signals from waveforms. Tang

(2004); Zheng and Tang (2005) used the parametric prediction method to extract reflection waves

from waveforms. We have processed a number of data sets of acoustic reflection logs obtained

from Chinese oil fields recently. Our own conclusion is that the above methods do not lead to

satisfactory results.

1.1.4 Borehole reverse time migration

In the last decade, attempts have been made to utilize borehole acoustic measurements to obtain

an image of geological structures away from the borehole (Hornby, 1989; Li et al., 2002). Recent

studies have revealed the great potential of acoustic reflection logging in detecting near-borehole

fractures and vugs (Tang, 2004; Tang and Patterson, 2009; Tao et al., 2008b).

One of the main issues concerning acoustic reflection logging is migration and imaging. Sev-

eral migration techniques have been applied to the problem of acoustic reflection data processing.

Among others, Hornby (1989) employed a back projection algorithm with a generalized Radon

transform. Li et al. (2002) used a Kirchhoff depth migration and Zheng and Tang (2005) adapted

the pre-stack frequency-wavenumber (f-k) migration for acoustic log configurations. Zhang and

Zhang (2009) utilized the equivalent offset migration for the acoustic log configurations imaging.

Reverse time migration (RTM), first proposed by Whitmore et al. (1983) in the 53rd SEG confer-

ence, has the ability to migrate any type of multiples (surface and internal) to their correct location

in the subsurface, can handle multi-pathing, image turning waves and steep dips. Although the

application of RTM in acoustic reflection imaging logging has been presented previously (Li et al.,

2013), its validity in anisotropic media is yet to be discussed. Wave propagation is greatly influ-
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enced by anisotropy, which negatively impacts the precision of borehole RTM in isotropic medium.

1.2 Outline

This thesis is organized as follows.

In Chapter 2, I briefly introduce finite difference method (FDM) in three dimensional space.

Modeling of wavefield propagation in underground formation is based on the first order velocity

and stress equations. The staggered-grid finite difference scheme is used to get the discretized

version of these first order velocity and stress equations in both isotropic and anisotropic media.

The perfectly matched layer (PML) scheme is used to eliminate boundary reflections. Accord-

ing to comparisons among conventional PML, Convolutional PML (C-PML) and multiaxial PML

(M-PML), I introduce a hybrid PML (H-PML) that combines the C-PML and M-PML. The new

PML scheme performs perfectly in both isotropic and anisotropic media. The original research

contribution contained in this chapter is the introduction and validation of the new PML scheme.

In Chapter 3, I talk about numerical simulations of radiation, reflection and multipole reception

of elastic waves, excited by a dipole source. In order to optimize azimuthal detection, the relation-

ships between S- wave polarization and both source-receiver offset and source-reflector angle are

analyzed. Results indicate that the S-S reflection is most sensitive to the angle between the incident

ray and the normal to the reflector. Its maximum amplitude occurs as the incident angle reaches

critical, a fact that can be used to calculate the total propagation distance of the S-S wave. The crit-

ical angle as well as the SH wave velocities of geological structures outside the borehole can thus

be determined. The original research contribution contained in this chapter is the determination of

S-wave velocity outside of the borehole.

Although, the most widely-applied numerical approach for modeling the propagation of seis-

mic waves is the FDM, different wave modes (P-, SV- and SH- wave) are to be simulated simul-

taneously, which causes the crosstalk from the interference of different modes. This crosstalk

reduces the precision of imaging condition during migration and impedes the determination of for-
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mation parameter gradients during time domain full waveform simulation (FWI). The independent

simulation of decoupled wave modes is excepted to reduce this kind of crosstalk. Because under

idealized circumstances the SH-mode of the full elastic wavefield propagates independently of the

P-SV modes, it can be sensed approximately independently in multicomponent experiments. The

three-dimensional (3D) simulation of this component of the full elastic response is simple, but also

meaningful from the point of view of data simulation. In chapter 4, a 3D temporal fourth-order

pseudo-spectral method (PSM) for solving the elastic SH wave equations in VTI media has been

proposed, which appears to suppress the wrap-around and Gibbs’ artifacts that have been observed

in other methodologies when waves propagate through heterogeneous formations—especially in

the presence of large and abrupt changes in the medium properties.

Under acoustic well logging conditions, reflected wave signals used in sonic reflection log-

ging are generally submerged in the full waveform records, hidden by the dominant direct waves

(direct P- and S- waves, and the Stoneley wave). Chapter 5 discusses methods on effectively ex-

tracting reflection signals from acoustic full waveforms in acoustic reflection well logging data

processing. The Karhunen-Loève (K-L) transformations combined with a band limiting filter is

used to extract reflections of interest from dominant direct waves. Under the assumption that large

energy (squared-amplitude) differences exist between each wave component, the direct Stoneley

wave, S-wave and the P-wave are eliminated sequentially by subtracting the most significant prin-

ciple components, after which the remaining signal is seen to be dominated by reflected events.

Thereafter, the extracted reflections can be used in migration to provide interpretable images of the

structures outside the borehole. Synthetic data are used to develop and justify our procedure for

subtraction of appropriate KL principle components; laboratory data are used to demonstrate a de-

crease in unwanted residuals in comparison to a common multiscale approach for separation. The

procedure is exemplified on a field data case with attention paid in particular to the consequences

to imaging of near-borehole structures.

The azimuth ambiguity has been an issue ever since the beginning of borehole acoustic reflec-
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tion imaging. This imaging authenticity indistinguishability, occurring not only in the borehole

reflection imaging but also in seismic imaging, is due to the intrinsic defect of the 2D data pro-

cessing which treats recorded 3D data as a 2D data set. A 3D migration scheme should be applied

to eliminate the azimuth ambiguity. Reverse time migration (RTM) was first introduced in the

late 1970s (Hemon, 1978) and shows promising imaging capabilities(Baysal et al., 1983; Whit-

more et al., 1983; McMechan, 1983; Loewenthal and Mufti, 1983). In the application of borehole

acoustic reflection imaging, the 2-D borehole RTM in isotropic medium is first introduced in 2014

(Li et al., 2014b). In chapter 6, a 3-D anisotropic RTM in borehole environment is developed for

migration of the reflected signals extracted from the simulated waveforms. To make a comparison,

the 2-D synthetic data from two horizontal wells is also simulated and migrated by a 2-D borehole

RTM scheme.

In Chapter 7, I summarize the results obtained by the schemes and workflow proposed in this

thesis. Plans for further studies are also given at the end.
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Chapter 2

Finite difference method

2.1 Introduction

The application of the finite difference method (FDM) to geophysical wavefield simulation can

be dated back to roughly half a century, when early applications were based on the displacement

formulation of wave equations (Alterman and Karal, 1968; Boore, 1972; Alford et al., 1974). The

staggered-grid FDM, which uses the first order velocity-stress formulation to simulate wavefield

propagation, was originally proposed by Yee et al. (1966) for Maxwell’s equations. It was then

used in seismic forward modeling by Madariaga (1976) and further developed by Virieux (1986)

who used the methodology to simulate P-SV wave modes, and by Levander (1988), who introduced

a fourth-order staggered grid formulation. According to Virieux (1986), the staggered-grid FDM

is suitable for numerical wave propagation in media with fluid-solid interfaces without any special

treatment of the discontinuity. Cheng et al. (1995) also points out the advantages of staggered-grid

scheme over the conventional schemes: 1) stable for any Poisson ratio and 2) small grid disper-

sion. Dougherty and Stephen (1991) used this two dimensional staggered-grid FDM in research

on scattering of seismoacoustic energy from rough water-solid interfaces. Graves (1996) applied

the staggered-grid FDM to solve wave propagation problems in 3D elastic media.

Van Vossen et al. (2002) addressed the importance of using harmonic averaging of the shear

modulus at fluid-solid surfaces. De Basabe and Sen (2015) make detailed comparisons between

standard grid FD method and staggered-grid FD method. In their paper, grid-dispersion analysis

shows that standard-grid FD methods can yield results almost as accurate as staggered-grid FD

method, but they require twice as many nodes in each direction. Numerical experiments show

that the standard-grid FD method yields the largest errors in most of the considered experiments,

whereas, the 4th order staggered-grid FD method reproduces waveforms with good or excellent
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accuracy. Therefore, it has been extended to borehole acoustic well logging applications where the

source is positioned in a fluid-filled borehole (Mallan et al., 2009).

An issue faced by FDMs, which has particular importance in borehole applications, is the mit-

igation of artificial reflections from computational boundaries. In order to eliminate these artificial

boundary reflections, Lindman (1975) proposed an absorbing boundary condition for the acous-

tic wave equation, which is capable of generating reflection coefficients less than 1 percent for a

wide range of frequencies and incident angles. Randall (1988, 1989) extended Lindman’s idea

to the elastic wave case and the staggered grid scheme. Yet, it doesn’t specify how to treat the

grid corners. A very popular absorbing boundary condition was discussed by Engquist and Majda

(1977), which is based on paraxial approximation for the wave equations. Reynolds (1978) used

a technique similar to that of Clayton and Engquist, although less rigorous, and obtained a local

boundary condition in Cartesian coordinates. His scheme works well at boundaries with lateral

inhomogeneities. Cerjan et al. (1985) proposed using damping layers or sponge zones, which in-

troduces a gradual reduction of displacement amplitudes in a strip of nodes along the boundaries,

to simulate a non-reflecting boundary condition. Israeli and Orszag (1981) combined both of the

paraxial conditions and damping layers. Peng and Toksöz (1995) designed a class of optimal ab-

sorbing boundary conditions for a given operator length, which yields reflection coefficients with

a smaller magnitude than Higdon absorbing condition (Higdon, 1986) and Reynolds absorbing

condition (Reynolds, 1978). Guddati and Lim (2006) implemented continued fraction absorbing

boundary conditions (CFABCs) in the standard finite element setting. But these authors report the

need for additional care in choosing the parameters (e.g., time step) are required if this method is

extended to time-domain calculation of elastic wave propagation. Most of these early implemen-

tations of the finite difference method use the second order wave equations, which results in the

difficulty in dealing with the artificial boundary reflections. So, a need remains to develop and

refine simulation tools for the borehole dipole imaging problem that balance numerical accuracy,

artifact minimization, and computational efficiency.
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2.2 Formulation

Wave propagation in an elastic medium is governed by the equation:

ρ∂
2
t u j = σi j, j, (2.1)

where ρ is the density, ui is the displacement vector and σi j is stress tensor, and where σi j, j rep-

resent spatial derivatives of the stress tensor. The comma between subscripts is used for spatial

derivatives. The Einstein summation convention for repeated subscripts is assumed. According to

Hooke’s law, the relationship between the stress and strain tensors is,

σi j = ci jklεkl, (2.2)

where ci jkl are the elastic stiffness coefficients. The strain tensor εkl is

εkl =
1
2
(uk,l +ul,k)., (2.3)

Equation (2.2) can be expressed in matrix form as

σ11

σ22

σ33

σ23

σ13

σ12


=



c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c16

c61 c62 c63 c64 c65 c66





ε11

ε22

ε33

2ε23

2ε13

2ε12


. (2.4)

If the medium is isotropic, the elastic constant tensor ci jkl becomes a fourth-order isotropic

tensor given by

ci jkl = λδi jδkl +µ
(
δikδ jl +δilδ jk

)
, (2.5)
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or, in the two-index notation,

cISO =



λ +2µ λ λ 0 0 0

λ λ +2µ λ 0 0 0

λ λ λ +2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


, (2.6)

where δi j is the Kronecker delta, which equals 1 as i = j; otherwise it equals zero. λ and µ are the

Lamé constants. The P wave velocity VP in isotropic medium is given by
√

λ+2µ

ρ
and the S wave

velocity VS is given by
√

µ

ρ
.

The elastic constant tensor simplifies in a vertical transverse isotropic (VTI) medium to

cV T I =



c11 c11−2c66 c13 0 0 0

c11−2c66 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66


, (2.7)

and in a horizontal transverse isotropic (HTI) to

cHT I =



c11 c13 c13 0 0 0

c13 c11 c33−2c44 0 0 0

c13 c33−2c44 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c66 0

0 0 0 0 0 c66


. (2.8)

Taking the VTI case in equation (2.7) as an example, equation (2.1) leads to nine coupled first

11



order velocity and stress equations:

∂σxx
∂x +

∂σxy
∂y + ∂σxz

∂ z = ρ
∂Vx
∂ t

∂σyx
∂x +

∂σyy
∂y +

∂σyz
∂ z = ρ

∂Vy
∂ t

∂σzx
∂x +

∂σzy
∂y + ∂σzz

∂ z = ρ
∂Vz
∂ t

, (2.9)

and
∂σxx

∂ t = c11
∂Vx
∂x +(c11−2c66)

∂Vy
∂y + c13

∂Vz
∂ z

∂σyy
∂ t = (c11−2c66)

∂Vx
∂x + c11

∂Vy
∂y + c13

∂Vz
∂ z

∂σzz
∂ t = c13

∂Vx
∂x + c13

∂Vy
∂y + c33

∂Vz
∂ z

∂σyz
∂ t = c44(

∂Vy
∂ z + ∂Vz

∂y )

∂σxz
∂ t = c44(

∂Vx
∂ z + ∂Vz

∂x )

∂σxy
∂ t = c66(

∂Vx
∂y +

∂Vy
∂x ),

(2.10)

where [Vx,Vy,Vz]
T is the particle velocity vector.

2.3 Staggered-grid finite difference approximation

The finite difference modeling of wave equations is extensively discussed by Moczo et al. (2014).

In this section we focus on the staggered-grid finite difference method for wavefield simulation.

For a univariate function f (x), the 2Nth staggered-grid FD formulation makes use of differencing

rule

δ2N f =
1

∆x

N−1

∑
m=0

am

[
f
(

x+
2m+1

2
∆x
)
− f

(
x− 2m−1

2
∆x
)]

, (2.11)
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where am is the coefficient of the 2Nth-order FD approximation to the first-order derivative. The

quantity δ2N f is applied on a 3-D grid in Cartesian coordinates (lx∆x, ly∆y, lz∆z) at time n∆t, where

∆x,∆y,∆z are the increments in X, Y and Z directions and ∆t is time step. Figure 2.1 schematically

illustrates the staggered-grid discretization for different parameters (e.g., velocity and stress com-

ponents). For example, the shear stress component σn
xy is expressed as σn

xy(lx +
1
2 , ly +

1
2 , lz); the

velocity component Vx is expressed as V
n+ 1

2
x (lx + 1

2 , ly, lz), with n as time index, etc. According to

Moczo et al. (2014), equation (2.9) can be discretized as,

V
n+ 1

2
x (lx + 1

2 , ly, lz) =V
n− 1

2
x (lx + 1

2 , ly, lz)+
∆t

ρ(lx+ 1
2 ,ly,lz)

(δxσn
xx(lx +

1
2 , ly, lz)

+δyσn
xy(lx +

1
2 , ly +

1
2 , lz)+δzσ

n
xz(lx +

1
2 , ly, lz +

1
2))

V
n+ 1

2
y (lx, ly + 1

2 , lz) =V
n− 1

2
y (lx, ly + 1

2 , lz)+
∆t

ρ(lx,ly+ 1
2 ,lz)

(δxσn
xy(lx +

1
2 , ly +

1
2 , lz)

+δyσn
yy(lx, ly +

1
2 , lz)+δzσ

n
yz(lx, ly +

1
2 , lz +

1
2))

V
n+ 1

2
z (lx, ly, lz + 1

2) =V
n− 1

2
z (lx, ly, lz + 1

2)+
∆t

ρ(lx,ly,lz+ 1
2 )
(δxσn

xz(lx +
1
2 , ly, lz +

1
2)

+δyσn
yz(lx, ly +

1
2 , lz +

1
2)+δzσ

n
zz(lx, ly, lz +

1
2)),

(2.12)

where δxσn
xx, for example, is given by

δxσ
n
xx(lx +

1
2
, ly, lz) =

1
∆x

N−1

∑
m=0

am [σn
xx(lx +m+1, ly, lz)−σ

n
xx(lx−m, ly, lz)] . (2.13)
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Figure 2.1: Schematic illustration of the staggered-grid discretization for different components.
The normal stress components are located in the middle of the grid; velocity components are set in
1/2 of the grid points towards corresponding directions; and shear stress components are located
in their corresponding 1/2 grid points.

Likewise, equation (2.10) is discretized as

σn+1
xx = σn

xx +∆t[c11δxV
n+1/2
x +(c11−2c66)δyV

n+1/2
y + c13δzV

n+1/2
z ]

σn+1
yy = σn

yy +∆t[(c11−2c66)δxV
n+1/2
x + c11δyV

n+1/2
y + c13δzV

n+1/2
z ]

σn+1
zz = σn

zz +∆t[c13δxV
n+1/2
x + c13δyV

n+1/2
y + c33δzV

n+1/2
z ]

σn+1
yz = σn

yz +∆tc44[δyV
n+1/2
z +δzV

n+1/2
y ]

σn+1
xz = σn

xz +∆tc44[δxV
n+1/2
z +δzV

n+1/2
x ]

σn+1
xy = σn

xy +∆tc66[δxV
n+1/2
y +δyV

n+1/2
x ].

(2.14)

14



During the velocity components update, the densities are acquired from the average of the two

assigned densities nearby, which can be written as

ρ(lx, ly + 1
2 , lz) =

ρ(lx+ 1
2 ,ly+

1
2 ,lz)+ρ(lx− 1

2 ,ly+
1
2 ,lz)

2

ρ(lx + 1
2 , ly, lz) =

ρ(lx+ 1
2 ,ly+

1
2 ,lz)+ρ(lx+ 1

2 ,ly−
1
2 ,lz)

2

ρ(lx + 1
2 , ly +

1
2 , lz +

1
2) =

ρ(lx+ 1
2 ,ly+

1
2 ,lz+1)+ρ(lx+ 1

2 ,ly+
1
2 ,lz)

2 .

(2.15)

During the stress components update, the elastic moduli related to shear stress tensors (such as c44

and c66 in VTI medium) are determined by the harmonic average. Taking c44 as an example, its

harmonic average form can be written as

4
c44(lx,ly,lz)

= 1
c44(lx+ 1

2 ,ly+
1
2 ,lz)

+ 1
c44(lx− 1

2 ,ly+
1
2 ,lz)

+ 1
c44(lx+ 1

2 ,ly−
1
2 ,lz)

+ 1
c44(lx− 1

2 ,ly−
1
2 ,lz)

4
c44(lx,ly+ 1

2 ,lz+
1
2 )

= 1
c44(lx+ 1

2 ,ly+
1
2 ,lz)

+ 1
c44(lx+ 1

2 ,ly+
1
2 ,lz+1)

+ 1
c44(lx− 1

2 ,ly+
1
2 ,lz)

+ 1
c44(lx− 1

2 ,ly+
1
2 ,lz+1)

4
c44(lx+ 1

2 ,ly,lz+
1
2 )

= 1
c44(lx+ 1

2 ,ly+
1
2 ,lz)

+ 1
c44(lx+ 1

2 ,ly+
1
2 ,lz+1)

+ 1
c44(lx+ 1

2 ,ly−
1
2 ,lz)

+ 1
c44(lx+ 1

2 ,ly−
1
2 ,lz+1)

.

(2.16)

2.4 Absorbing boundary conditions

The absorbing boundary condition is used to eliminate reflections from computational boundaries.

The perfectly matched layer (PML) is one of the most widely-used approaches in staggered-grid

FDM. In this section, the basic principals of PML scheme as well as some improved PML ap-

proaches will be discussed, based on which, a new PML scheme is proposed to improve the effec-

tiveness of PML in anisotropic media.
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2.4.1 Perfectly matched layer (PML)

Wavefield simulation boundaries tend to produce artificial reflections which must be suppressed

or absorbed. The PML approach to boundary absorption, introduced by Berenger (1994), has

proven to be very efficient compared with previously developed methods (Collino and Tsogka,

2001; Komatitsch and Tromp, 2003; Festa and Vilotte, 2005). As illustrated in Figure 2.2, the

PML concept involves splitting velocity and stress fields in terms of components perpendicular and

parallel to the interface (Chew and Weedon, 1994; Collino and Monk, 1998; Collino and Tsogka,

2001). Taking the x direction as an example, a damping profile dx is created, with dx = 0 in the

physical domain and dx > 0 in the defined PML layer. The new operator ∇x̃ = [ ∂

∂ x̃ ,
∂

∂y ,
∂

∂ z ] is thus

introduced, where ∂

∂ x̃ =
1
sx

∂

∂x , sx = 1+ dx
iω .

The split-field PML has two main imperfections: 1) the velocity and stress fields are required

to be split into two subfields respectively; and 2) its efficiency decreases at grazing incidence after

discretization, because the damping coefficient is inversely proportional to the angular frequency

and thus depends on the direction of propagation of the wave.

2.4.2 Convolutional perfectly matched layer (C-PML)

In order to improve the response of the discrete PML at grazing incidence, the convolutional PML

(or C-PML) method (Kuzuoglu and Mittra, 1996) or the complex frequency shifted-PML (CFS-

PML) method (Bérenger, 2002) can be invoked. The CFS-PML method introduces a frequency-

dependent term which eliminates the requirement that the velocity-stress equation be split into

separate terms. The C-PML scheme involves adding not only the damping profile, but two other

real variables, such that:

sx = κx +
dx

αx+iω . (2.17)

When κx = 1 and αx = 0, the C-PML degenerates to the classic PML case. Snapshots of the

wavefield in a 2D medium are illustrated in the following discussion to make detailed comparisons

among different PML layers. The top row of Figure 2.3 contains snapshots of a monopole-source
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Figure 2.2: Perfectly-matched layers (PML) outside the physical domain.

wavefield propagating in an isotropic medium as calculated with C-PML absorbing layers. The

artificial boundary reflections are effectively suppressed. The C-PML is, however less stable than

the split PML scheme because of its frequency-dependent term and/or the convolution operations.

Abarbanel et al. (2002) report that C-PML solutions for Maxwell’s equations experience slowly

growing spurious solutions, which eventually spread throughout the physical domain. Further-

more, Komatitsch and Martin (2007) observe that the C-PML approach exhibits strong instabili-

ties when applied to waves in elastic anisotropic media. The bottom row of Figure 2.3 contains

snapshots of a monopole source wavefield propagating in a VTI medium with C-PML absorbing

layers. At times greater than 1.2 ms, artificial reflections emerge at the edges of the snapshots. The

stiffness matrices in isotropic (Ciso) and anisotropic (Cani) media used in this section are,

Ciso =


40 0 0

0 40 0

0 0 13.55

 , and, Cani =


4 7.5 0

7.5 20 0

0 0 2

 . (2.18)
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where, the parameters of stiffness matrix in anisotropic case are followed by Kristel C. Meza-

Fajardo’s paper (Meza-Fajardo and Papageorgiou, 2008).

2.4.3 Multiaxial perfectly matched layer (M-PML)

The multiaxial perfectly matched layer (M-PML) method has been found to be stable even for

media exhibiting very large degrees of anisotropy (Meza-Fajardo and Papageorgiou, 2008). In an

M-PML application, in contrast to equation (2.17), the sx term is

sx = κx +
dx +mx/zdz

iω
, (2.19)

where mx/z is a weighting factor. The top row of Figure 2.4 contains snapshots of a monopole

source wavefield propagating in an isotropic medium with M-PML absorbing layers. While most

of the boundary artificial reflections are effectively suppressed, small artificial reflections are no-

ticeable at some incidence angles (compare with the top row of Figure 2.3). However, the accuracy

of the M-PML method for waves propagating in anisotropic media is relatively high. The bottom

row of Figure 2.4 contains snapshots of the monopole source wavefield propagating in the VTI

medium with M-PML absorbing layers. In comparison with the C-PML result in the bottom row

of Figure 2.3, a significant performance up-tick is observed. Some minor artificial reflections still

exist at some incidence angles, but these can be reduced (though at higher computational cost) by

increasing the size of the PML layers.

2.4.4 Hybrid perfectly matched layer (H-PML)

To maximize both accuracy and stability I construct a hybrid PML (H-PML) method, that combines

the advantages of both the C-PML and the M-PML through the optimization of the damping profile.

Because the C-PML and M-PML are independent of one another, the two can be straightforwardly

hybridized by introducing

sx = κx +
dx+mx/zdz

αx+iω . (2.20)
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Figure 2.3: Snapshots of the monopole source wavefield propagation in both isotropic media (top
row) and anisotropic media (bottom row) with C-PML absorbing layers. For the isotropic medium,
the elastic constants are in matrix Ciso , shown in equation (2.18). The recording time is 0.7 ms. For
the anisotropic medium, the elastic constants are in matrix Cani , shown in equation (2.18). The
recording time is 1.6 ms.

In order to invoke the above equation in a time domain implementation, convolution or auxil-

iary variables are required.

Figure 2.5 contains snapshots of a monopole source wavefield propagating in both isotropic and

anisotropic media with H-PML absorbing layers. The artificial boundary reflections are effectively

suppressed for both isotropic and anisotropic media.

We wish to further study the difference among these three PML implementations on seismo-

grams in both isotropic and anisotropic media. Figure 2.6 shows the profiles of a single-layer model

with different stiffness parameters (The above three seismograms are obtained in an isotropic

medium, with VP,VS velocities and density of 2000 m/s, 1200 m/s and 1500 kg/m3 respectively;

the lower three seismograms are obtained in anisotropic medium, with C11, C12, C22, C16, C26,

C66 and a density of 17.47e9 N/m2, 11.93e9 N/m2, 17.47e9 N/m2, -2.14e9 N/m2, -2.14e9 N/m2,

4.91e9 N/m2 and 2250 kg/m3 respectively.). The spatial interval is 5 m, and the grid number

is 1025× 601. The source is a Ricker wavelet with a dominant frequency of 20 Hz. When the
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Figure 2.4: Snapshots of the monopole source wavefield propagation in both isotropic media (top
row) and anisotropic media (bottom row) with M-PML absorbing layers.For the isotropic medium,
the elastic constants are in matrix Ciso , shown in equation (2.18). The recording time is 0.7 ms.
For the anisotropic medium, the elastic constants are in matrix Cani , shown in equation (2.18). The
recording time is 1.6 ms.
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Figure 2.5: Snapshots of the monopole source wavefield propagation in both isotropic media (top
row) and anisotropic media (bottom row) with H-PML absorbing layers.For the isotropic medium,
the elastic constants are in matrix Ciso , shown in equation (2.18). The recording time is 0.7 ms.
For the anisotropic medium, the elastic constants are in matrix Cani , shown in equation (2.18). The
recording time is 1.6 ms.
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medium is isotropic (Figure 2.6a, b and c), the seismograms indicate that the C-PML and H-PML

perform better than the M-PML, as some artificial signals from the boundaries can be detected

in Figure 2.6b, where the events pointed out by red dashed arrows denote artifacts caused by M-

PML. When the medium is anisotropic (Figure 2.6d, e and f), the recorded profiles indicate that

the M-PML and H-PML perform better than the C-PML, whose seismic seismograms from 3 to 5

seconds suffer severely from artificial boundary reflections. H-PML provides satisfactory results

in both isotropic and anisotropic formations.

The presence of direct waves whose energy dominates over other arrivals, as in Figure 2.6 will

tend to mask the influence of different PML implementations on true reflected signals from the

underground interfaces or structures. To study the difference on reflection profiles using different

PML methods, Figure 2.7 shows a two-layer model and the reflections recorded by the receivers

when C-PML, M-PML and H-PML methods are applied, respectively. The basic parameters of

the model (such as the grid size, dominant frequency of the Ricker wavelet and the total recording

time) are the same as the above single-layer model when the medium is isotropic, except that

the formation under 1.2 km is anisotropic, whose elastic parameters are the same as the above

single-layer model when the medium is anisotropic. The reflection seismograms contain significant

artificial reflections when C-PML are used (the artificial boundary reflections are present in red

dashed square area). The M-PML results are also subject to some degree of artificial reflections on

both sides of the seismograms during 1.5 to 3.5 seconds (red dashed areas). Seismograms with the

fewest artificial reflections are obtained when H-PML is applied.

Figure 2.8 shows comparisons of full recorded waveform data at three different receiver offsets

calculated using C-PML (blue curve), M-PML (black curve) and H-PML (red curve) for (a)-(a1)

isotropic, (b)-(b2) anisotropic and (c)-(c2) two-layer media, respectively. In isotropic media, wave-

forms acquired by C-PML and H-PML overlap with each other quite well. However, some minor

artifacts can be detected in waveforms obtained using M-PML, as illustrated in black dashed areas

in Figure 2.8a1. In anisotropic media, waveforms acquired by M-PML and H-PML match with
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Figure 2.6: Synthetic seismograms in both isotropic((a), (b), (c)) and anisotropic((d), (e), (f)) me-
dia using C-PML, M-PML and H-PML. The seismograms indicate that the C-PML and H-PML
perform better than the M-PML in isotropic medium. However, the M-PML and H-PML per-
form better than the C-PML. The seismograms of C-PML suffer severely from artificial boundary
reflections, shown in red area of (d).

each other perfectly (Figure 2.8b1), yet the waveforms obtained by C-PML in both anisotropic and

two-layer media are strongly affected by artificial boundary reflections when propagation time is

greater than 4 seconds (black dashed areas in Figure 2.8b and b2, Figure 2.8c and c2). The M-PML

method provides satisfactory results in two-layer media, except in some areas minor artifacts are

persistently present, shown in Figure 2.8c1 and Figure 2.7.

In Figure 2.9, 3D aspects of the wavefield propagating in an isotropic medium are illustrated;

Table 2.1 contains the medium properties used. This example has been set up to resemble a bore-

hole logging experiment; as time advances in Figures 2.9a–d, the wavefield can be seen prop-
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from boundary reflections, shown in red areas of C-PML and M-PML results.
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Figure 2.8: Comparisons of full recorded waveform data calculated using C-PML (blue curve),
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Figure 2.9: Snapshots of wave propagation in 3D medium.

agating from the borehole to the outside formation and interacting with an interface, after which

reflected and transmitted wave energy can be seen propagating back to and away from the borehole.

Table 2.1: The parameters for 3D modeling of wavefield propogation.

Vf (m/s) VP(m/s) VS(m/s) ρ(g/cm3)

Borehole 1500 - - 1.0

Near Borehole formation - 3000 1200 2.0

Second layer - 4000 2300 2.5
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2.5 Conclusions

The elastic medium staggered-grid finite difference method is discussed for borehole acoustic wave

simulation. For suppression of the artificial boundary reflections, standard PML, C-PML and

M-PML methods can be employed. The C-PML approach involves a general boundary formula

designed for the grazing incidence. However, in some cases, instability can be observed either

because of the frequency-dependent term or the convolution operations. The M-PML, though of

higher efficiency especially in grazing incidence, nevertheless produces spurious reflections if the

damping parameter is not optimized and the thickness of the PML is not large enough. A hybrid

PML based on the C-PML and M-PML is demonstrated to produce a significantly reduced set of

artificial boundary reflections.
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Chapter 3

Wavefield simulation for a dipole source

3.1 Introduction

Simulation of elastic waves in borehole environments is of great importance in developing our

understanding of the characteristics of wave propagation in acoustic well logging. The FD method

has been extensively applied into two-dimensional wavefield simulation in acoustic well logging

(Stephen et al., 1985; Randall et al., 1991; Leslie and Randall, 1992). With the development of

parallel computers, the FD method has also been applied to 3D borehole wavefield propagation

problems (Daube and Randall, 1991; Eppstein and Dougherty, 1998; Yoon and McMechan, 1992;

Chen, 1994; Chen et al., 1998; Tao et al., 2008a; Wang et al., 2015). In this chapter, the numerical

simulations of radiation, reflection and multipole reception of elastic waves excited by a dipole

source will be discussed by implementing the 3D borehole wavefield propagation in anisotropic

media.

3.2 Numerical simulation of waves from a dipole source in isotropic media

Seismic S-waves excited by a monopole source, when propagating in slow formations (i.e., those

for which the S-wave velocity in the formation is lower than the acoustic wave velocity in the

borehole), are not received by instruments in the borehole. This impediment contributes to the

requirement for dipole or even multipole acoustic well logging. Dipole transmitters are, essentially,

pistons which create a pressure increase on one side of the borehole and a decrease on the other

(Close et al., 2009). In this section I consider the numerical modeling of the elastic wave response

to the excitation of a dipole source. We begin by developing some analytical expressions to be

used for benchmarking.
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For sonic waveforms with a dipole source, let the displacement wavefield inside the borehole

and in the formation outside the borehole be

uin = ∇ϕ f

uout = ∇ϕ +∇×Ψ ,
(3.1)

where uin and uout are the wavefield displacements in borehole fluid and formation outside the

borehole, respectively. ϕ f denotes its potential in the borehole fluid, ϕ is the compressional wave

potential within the formation. The S-wave potential Ψ can be expressed as

Ψ = χ ẑ+∇× (η ẑ), (3.2)

where χ and η are the SH- and SV- wave displacement potentials, respectively. In homogeneous

media, they have the integral representations (Tang and Patterson, 2009)

χ(ω;r,z) =
S(ω)cos(φ)

4π

∫ +∞

−∞

E(ω,k)K1(sr)eikzdk, (3.3)

and

η(ω;r,z) =
S(ω)sin(φ)

4π

∫ +∞

−∞

F(ω,k)K1(sr)eikzdk, (3.4)

where S(ω) is the source spectrum, φ is the angle between the direction of particle polarization

of the wave and the source orientation, E(ω,k) and F(ω,k) are undetermined functions which

depend on boundary conditions, K1(sr) is a modified Bessel function with radial wave number s.

The far field solution for the SH- and SV-wave displacement components can then be expressed

as (Tang et al., 2014)

uφ ∼ [iρβωE(ω,k0)sinθ cosφ ]eiωR/β

4πµR S(ω), (3.5)

and

uθ ∼ [ρω2F(ω,k0)sinθ sinφ ]eiωR/β

4πµR S(ω), (3.6)

where ρ and µ are the formation density and shear modulus respectively. θ is the tilt angle (θ = 90◦

in this thesis). Let us use these results to characterize wave amplitudes in the borehole environment.
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Waveforms recorded by borehole receivers are affected by the source radiation from borehole

to formation, reflection processes occurring within the formation, and responses of the borehole to

the reflected waves; also, wavefield amplitude attenuation occurs during propagation. This can be

described with a convolution equation in the frequency domain as (Tang and Patterson, 2009)

RWV (ω) = S(ω)∗RD(ω)∗RF(ω)∗RC(ω)
eiωD/β

D
e
− ωD

2Q
β

β , (3.7)

in which RWV denotes the received reflections; S(ω) is the source spectrum; RD(ω) stands for the

borehole radiation (Meredith, 1990); RC(ω) is related to borehole receiver response (Peng et al.,

1993), and RF(ω) is the acoustic reflectivity at the reflector. D is the total propagation distance

from a source to a receiver; Qβ denotes the shear wave attenuation. ”∗” used in this thesis denotes

convolution. For example, the convolution of S(ω) and RD(ω) can be expressed as

S(ω)∗RD(ω) =
∫ +∞

−∞

S(η)RD(ω−η)dη . (3.8)

According to Tang et al. (2014), the far-field radiation for SH− and SV− waves (RDSH and

RDSV ) can be expressed as

RDSH = iρβωE(ω,k0)sinθ cosφ ,

RDSV = ρβωF(ω,k0)sinθ sinφ .

(3.9)

Tang et al. (2014) point out that, in accordance with elastic reciprocity (Achenbach, 2003), the

radiation and receiver patterns both for SH- and SV- waves are equal:

RC(ω,θ) = RD(ω,θ). (3.10)

For simplicity, the wave field attenuation factor e
− ωD

2Q
β

β in equation (3.7) will not be discussed

here and only the SH component will be discussed in the following section. Let R(SH) be the

isotropic SH reflection coefficient. By combining equations (3.9)–(3.10), the received SH reflec-

tion signal RWVSH(ω) becomes

RWVSH(ω) = S(ω)∗RD(SH) ∗R(SH) ∗RDSH
eiωD/β

D
. (3.11)
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Figure 3.1: The 3D profile of the isotropic model
with dipole source and quadrupole receivers. A dipole
source is oriented along the x-axis of the coordinate
system defined by the tool. The reflector is parallel to
and 3m away from the borehole.

Figure 3.2: Displacement of re-
ceivers around the tool. The an-
gle φ between the dipole and the
reflector interface varies between
0◦-90◦ with an interval of 15◦.

The low frequencies used in dipole acoustic logging makes available wider lateral detection.

Let us consider propagation in isotropic media. In Figure 3.1, a dipole source is oriented along

the x-axis of the coordinate system defined by the tool. The angle φ between the dipole and the

reflector interface, as illustrated in Figure 3.2, varies between 0◦-90◦ with an interval of 15◦. The

reflector is 3 m away and parallel to the borehole, which means the dip angle θ in equation (3.9) is

90◦.

The dipole source is located within the water-filled borehole, which has a diameter of 0.21 m.

30 receiver stations are deployed at 0.15 m intervals along the axis of the tool, with a distance of

0.15 m from the first receiver to the source. Each receiver station is populated by four azimuthal

sensors, evenly spaced around the tool. We refer to the two sub-receivers parallel to the dipole

source as receivers 1 and 3, and the two perpendicular to the dipole source as receivers 2 and 4 (see

Figure 3.2). The dominant frequency of the source field is 3 kHz.
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Figure 3.3: (a) Received reflections of receiver 1 (red) and receiver 3 (blue); and (b) Received
reflections of receiver 2 (red) and receiver 4 (blue). The value in Y axis denotes the receiver
number.

We next carry out a set of numerical experiments to validate the wave field simulation frame-

work. When the source is oriented along the reflector strike, in accordance with equation (3.6) a

pure SH wave and its corresponding SH reflection are generated (see Figure 3.3). This is illustrated

in Figure 3.3a in which data from receivers 1 (red) and 3 (blue) are plotted. SH signals received

by receivers 1 and 3 should have a phase difference resulting from differing path lengths, which

is confirmed by Figure 3.3a. Furthermore, the dipole character of the source should according to

theory cause the energy received by receivers 2 and 4 to be cancelled out, and this too is confirmed

in Figure 3.3b.

We next examine the variability of the various modes measured in the presence of the dipole

source. For situations when 90◦ > φ > 0◦, reflected SH, SV and P modes should be received by all

four receivers around the tool. Figure 3.4 shows the results when φ is 30◦ (see Figure 3.4a-b) and

60◦ (see Figure 3.4 c-d). In Figure 3.4a, for example, the reflections recorded by receivers 1 and 3

consist of a leaky P wave reflection, a leaky P-SV reflection and an S-S reflection. This conforms

with the statements of Tang and Cheng (2004), who assert that a leaky P wave will be excited by a

dipole source. The P-P and P-SV reflections measured by receivers 1 and 3 appear to be identical

to those measured by receivers 2 and 4 (see Figure 3.4). Whereas, in the case of the S-S reflections,

for both receiver pairs 1-3 and 2-4, the reflection signals show a distinctive phase difference when
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Figure 3.4: (a) and (b) Received reflections when φ is 30◦; (c) and (d) Received reflections when
φ is 60◦ . The value in Y axis denotes the receiver number.

the offsets are relatively small. As offset increases, they gradually merge with each other. This

means that the recorded signals are dominated by SH modes at small offsets, and SV modes at

large offsets.

When the reflector azimuth is perpendicular to the orientation of the dipole source (φ is 90◦),

a pure SV wave and its corresponding SV reflection are generated, as shown in Figure 3.5. Figure

3.5a shows the reflections observed by receiver 1 (red) and receiver 3 (blue). The reflections

recorded by receivers 1 and 3 include a leaky P wave reflection, a leaky P-SV reflection and pure

SV-SV reflection. Figure 3.5b is a plot of the reflections measured by receivers 2 (red) and 4 (blue);

because receivers 2 and 4 are the same distance from the reflector as 1 and 3, the reflections are

identical. Through Figures 3.3-3.5, we observe that when φ increases from 0◦ to 90◦, the merging

of S-S reflections, i.e., the change from the case of a dominant SH mode to the case of a dominant

SV mode begins at closer offsets.

We observe from the above results that the leaky P-P reflected wave amplitude as well as the
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Figure 3.5: (a) Received reflections of receiver 1 (red) and receiver 3 (blue); (b) Received reflec-
tions of receiver 2 (red) and receiver 4 (blue) . The value in Y axis denotes the receiver number.

leaky P-SV wave amplitudes vary with the azimuth angle of the reflector: the amplitudes increase

with its azimuth angle. Whereas, the P-SV wave amplitude variation versus offset, from near to far,

is opposite to that of the P-P wave. For the S-S reflection, more detailed analysis will be presented

in the following discussion.

Figure 3.6 is a plot of the signals measured by receiver 1 from φ = 0◦ to φ = 90◦ with offsets

ranging from of 1.5 m to 3.75 m. In Figure 3.6, when the offset is 1.5 m, P- and S- head waves, P-P,

P-SV reflected waves and the S-S reflected wave are all visible. Focusing on the rectangular area,

as the azimuth angle between the source and reflector increases, the SV wave energy increases

while the SH wave energy decreases; this is consistent with the source-reflector angle and S-wave

polarization relationship in equation (3.9). The response at receiver 3 (not plotted) is similar.

In Figure 3.7 normalized reflection signals observed at receiver 1, from φ = 0◦ to φ = 90◦, are

plotted with offset ranging from of 1.5 m to 3.75 m. The P-P reflection amplitude (highlighted by

a dashed red rectangle) increases with the azimuth angle of the reflector, and decreases with offset.

In contrast, there is no such trend observed for the S-S reflection signals (dashed black rectangle),

because of the transformation between SH- to SV- wave signals, a result which differs from that

described by Wei and Tang (2012). This is because the amplitude of S-S reflection depends on the

azimuth angle and also source-receiver offset.
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Figure 3.6: Full waveforms of R1 with an offset of (a) 1.5 m, (b) 2.25 m, (c) 3.0 m and (d) 3.75 m.

In Figure 3.8 signals measured by receiver 2 from φ = 0◦ to φ = 90◦, with offset ranging from

of 1.5 m to 3.75 m, are plotted. No P- and S- head waves appear; only the P-P, P-SV and S-S

modes are visible. This is because the P- and S- direct waves destructively interfere between the

x-directional dipole source and the y-directional receiver 2. As the azimuth angle between the

source and reflector increases, the SV wave energy increases, as emphasized in the black dashed

rectangular area in Figure 3.8. Signals received by receiver 4 are similar and are not shown.

In Figure 3.9, reflection signals measured by receiver 2 from φ = 0◦ to φ = 90◦, with offset

ranging from 1.5 m to 3.75 m, are plotted. The reflected signal here is the same as the full wave-

forms discussed above; receivers which are orthogonal to the radiation direction of a dipole source

record pure reflections only.

We have discussed the relationship between the offset and the S-wave polarization in the pres-

ence of different reflector azimuth angles. We next consider in greater detail the relationship be-

tween the S-S reflection amplitude and the offset. We do so by extracting the S-S reflection for

different reflector azimuth angles. In Figure 3.10 the normalized S-S reflected amplitude with

different reflector azimuth angles versus receiver offset is plotted.

Analysis of Figures 3.6-3.9 revealed that the SH reflection changes into an SV reflection as
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Figure 3.7: (a) Reflected waves of R1 with an offset of 1.5 m; (b) Reflected waves received by R1
with an offset of 2.25 m; (c) Reflected waves received by R1 with an offset of 3.0 m; (d) Reflected
waves received by R1 with an offset of 3.75 m.

offset increases. The amplitude of the SV reflection is larger than that of the SH reflection, as seen

in Figures 3.10b-d, where the maximum normalized S-S reflected amplitude happens to appear at a

far and fixed offset (in this case, the offset is 4.125 m). However, it does not happen in the example

in Figure 3.10a, i.e., when φ = 15◦. This is because the transition from SH to SV reflection is not

complete, and there is no pure SV reflection recorded even at the maximum offset.

Next we consider the reason why the maximum normalized S-S reflected amplitude occurs at

an offset of 4.125 m. In equation 3.11, let

H(ω) = S(ω)∗RDSH ∗R(SH) ∗RDSH , (3.12)

be the Fourier transform of the time function h(t):

H(ω) =
∫ +∞

−∞

h(t)eiωtdt. (3.13)

By multiplying eiωD/β

D with H(ω), we obtain

H(ω)
eiωD/β

D
=

1
D

∫ +∞

−∞

h(t)eiω(t−D/β )dt = RWV (ω), (3.14)
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Figure 3.8: (a) Full waveforms of R2 with an offset of 1.5 m; (b) Full waveforms received by
R2 with an offset of 2.25 m; (c) Full waveforms received by R2 with an offset of 3.0 m; (d) Full
waveforms received by R2 with an offset of 3.75 m.
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Figure 3.9: (a) Reflected waves of R2 with an offset of 1.5 m; (b) Reflected waves received by R2
with an offset of 2.25 m; (c) Reflected waves received by R2 with an offset of 3.0 m; (d) Reflected
waves received by R2 with an offset of 3.75 m.
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Figure 3.10: Cross-plots of maximum amplitude versus receiver offset. The value in X axis denotes
the offset.

where

h(t) = s(t)rd2
(SH)r(SH), (3.15)

and where s(t) is the time-domain form of S(ω). Based on equations (3.7), (3.9) and (3.10), the

time domain form of RD(ω), or RC(ω), is found to be

rd(SH) =
1

2π

∫ +∞

−∞

iρβωE(ω,k0)cosφeiωtdω. (3.16)

The SH reflection response from equation (3.14) is,

RWV (ω) = r(SH)

− 1
4π2 ρ2β 2 cos2 φ

D

∫ +∞

−∞

s(t)eiω(t−D/β )dt
(∫ +∞

−∞

ωE(ω,k0)eiwtdω

)2

, (3.17)

where, r(SH) is the isotropic SH reflection coefficient

r(SH) =
ρ1β1 cosϕ1−ρ2β2 cosϕ2
ρ1β1 cosϕ1+ρ2β2 cosϕ2

. (3.18)

The amplitude part of equation (3.17) is

A = r(SH)

− 1
4π2 ρ2β 2 cos2 φ

D
. (3.19)
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Figure 3.11: S wave emission, reflection and transmission.

Therefore, determining the extreme value of A is equivalent to determining the extreme value

of the reflection coefficient. In this case, the maximum value of the above equation occurs when

cos(ϕ2) = 0, where ϕ2 is as shown in Figure 3.11. We have,

cosϕ1 =
2Z
D ,

cosϕ2 =

√
1− β 2

2
β 2

1
(1− 4Z2

D2 ) .

(3.20)

Letting the reflection angle change from 0◦ to 60◦ with a sample rate of 0.5◦ in equation (3.11),

the amplitude difference versus different reflection angles can be obtained, as shown in Figure

3.12. In Figure 3.12, the normalized amplitude of S wave reflection is observed to reach its maxi-

mum value when the incident angle is 36◦. Given the geometrical relationship in Figure 3.11, the

calculated offset with an incident angle of 36◦ is about 4.125 m, which is consistent with the results

in Figure 3.10.

Based on the cross-plot of maximum amplitude versus receiver offsets, the offset of maximum

amplitude can be found, and used to determine the total propagation distance of D (see Figure

3.11). Both the distance between the borehole and the reflector and the critical angle can therefore
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be calculated. As a result, the shear wave velocity of the second layer outside a borehole can be

obtained using Snell’s law.

3.3 Numerical simulation of waves from a dipole source in anisotropic media

Waveforms excited by a dipole directional source may also be simulated in an anisotropic medium,

the model that we are using is similar from Figure 3.1, except the size of the model is 5×5×8 (m3).

The distance between the source and the first receiver is 1 m and the distance between receivers is

0.16 m, with altogether 30 receivers ranging from 1 m to 5.64 m. The layer close to the borehole

is a VTI medium, whose elastic parameters are

cV T I =



23.87 15.33 9.79 0 0 0

15.33 23.87 9.79 0 0 0

9.79 9.79 15.33 0 0 0

0 0 0 2.77 0 0

0 0 0 0 2.77 0

0 0 0 0 0 4.27


(3.21)

.

Borehole parameters and the parameters of the second layer are identical to those of the

isotropic case, as shown in Table 2.1. 8 sub-receivers of each receiver are evenly spaced around

the borehole, as shown in Figure 3.13.

With the source orientation along the reflector strike, the received reflections with offsets rang-

ing from 1 m to 5.64 m are shown in Figure 3.14; a pure SH reflection is generated (see Figure

3.14a, c and d). Because of the geometrical difference of the receivers in terms of the directional

dipole source and reflector, the SH reflections received by pair 4 and 8 as well as pair 2 and 6 do

not have exactly opposite phases compared with the receiver pair 1 and 5. Receiver pair 3 and 7

do not receive reflections because of the source directionality.

When φ is 30◦, the qP-qP, qP-qSV and the SH reflections are present at each receiver, as
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Figure 3.12: Cross-plot of normalized amplitude ver-
sus different reflection angles.

Figure 3.13: Displacement of 8 re-
ceivers around tool.

shown in Figure 3.15. The SH reflection amplitude reaches its peak at the near offset, where the

qSV reflection emerges. The amplitude of the qP-qP reflection increases with offset, which is the

opposite of that observed in the isotropic medium case (Figure 3.4a and b).

Figure 3.16 and Figure 3.17 show the received reflections for the 8 receivers when φ = 60◦

and φ = 90◦, respectively. According to Figures 3.14-3.17, with the increase of the angle between

source orientation and the reflector strike, the amplitudes of the qP-qP, qP-qSV reflections increase,

as does the qSV-qSV reflection. However, the amplitude of the SH-SH reflection is decreasing and

it reaches to its minimum value when φ = 90◦. The SH-SH reflection from different reflector

azimuth angles is then extracted, and the normalized SH-SH reflected amplitude with different

reflector azimuth angles versus receiver offset is plotted in Figure 3.18. The SH-SH amplitude

of each receiver reaches its peak at an offset of 2.76 m in spite of different reflector strikes. In

a VTI medium, the received waveforms recorded by the receivers will behave differently than

the prediction of equation (3.11). However, theoretically, the maximum value of the received SH

amplitude will occur when the wave propagates to the interface at the critical angle. From Figure

3.18, the relationship between the maximum amplitude and the receiver offset is observed to be

unrelated to the azimuth angle of the reflector. In fact, the RF(ω) term plays a dominant role in

the change of the SH reflection amplitude.
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Figure 3.14: Received reflections for 8 evenly spaced receivers when the strike of reflector is
parallel to the radiation of the directional source. The value in Y axis denotes the receiver number.

The SH reflection coefficient rSH , according to Slawinski (2003), can be expressed as,

rSH =

√
ρ1cI

44 cosϕ1√
cI

66 sinϕ12+cI
44 cosϕ12

−
√

ρ2cII
44 cosϕ2√

cII
66 sin2

ϕ2+cII
44 cos2 ϕ2

√
ρ1cI

44 cosϕ1√
cI

66 sin2
ϕ1+cI

44 cos2 ϕ1

+
√

ρ2cII
44 cosϕ2√

cII
66 sin2

ϕ2+cII
44 cos2 ϕ2

, (3.22)

where cI
44,c

I
66 and cII

44,c
II
66 are the elastic constants of the media supporting the incident and the

refracted waves, ϕ1, ϕ2 are the incident and transmitted angles, respectively, and ρ1 and ρ2 denote

the density of the incident and transmitted layers, respectively. In order to eliminate ϕ2 in the

above equation, we make use of Snell’s law in VTI media as

sinϕ1√
cI

66 sin2
ϕ1+cI

44 cos2 ϕ1
ρ1

=
sinϕ2√

cII
66 sin2

ϕ2+cII
44 cos2 ϕ2

ρ2

. (3.23)

Solving equation (3.23), we obtain

ϕ2 = arcsin

√
ρ1cII

44sin2
ϕ1

[ρ2(cI
66− cI

44)−ρ1(cII
66− cII

44)]sin2
ϕ1 +ρ2cI

44
. (3.24)

Then we change the incident angle from 0◦ to 90◦ with a sample rate of 0.5◦ in equation (3.22)

to obtain the amplitude difference for various reflection angles, which is shown in Figure 3.19.
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Figure 3.15: Received reflections for 8 evenly spaced receivers when there is a 30◦ angle difference
between the strike of reflector and the radiation of the directional source. The value in Y axis
denotes the receiver number.

The normalized amplitude of the SH reflection is observed to reach its maximum value when the

reflection angle is 50.5◦. When the incident angle is 50.5◦, the calculated offset according to Figure

3.18 is about 2.76 m, which is consistent with the result in Figure 3.19.

3.4 Conclusions

The 3D elastic staggered-grid finite difference method is applied to the investigation of wavefield

simulation for a directional dipole source, illuminating a parallel reflector. The reflector is rotated

around the source, both in isotropic and anisotropic media. In the isotropic medium, the reflections

observed at the four evenly spaced receivers around the borehole show an angular dependence

related to the geometry of the reflector. Furthermore, a transition is detected between the SH-

SH reflection and SV-SV reflection with the increase of the offset. Analysis of the relationships

between the borehole wavefield reception, radiation and reflection of S-S reflected signals show

that the maximum S-S reflected amplitude occurs when the incident angle of S wave reaches its
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Figure 3.16: Received reflections for 8 evenly spaced receivers when there is a 60◦ angle difference
between the strike of reflector and the radiation of the directional source. The value in Y axis
denotes the receiver number.

critical value (when total reflection occurs). Based on the cross-plot of maximum amplitude versus

receiver offsets, the offset of maximum amplitude can be found, and used to determine the total

travel distance. Both the distance between the borehole and the reflector and the critical angle can

therefore be calculated. As a result, the shear wave velocity of the second layer outside a borehole

can be obtained according to Snell’s law.

In the VTI medium, the received waveforms recorded by the receivers is different from the

isotropic medium. In theory, the maximum value of the received SH amplitude will occur when

the wave propagates to the interface with a critical angle. The SH-SH reflection coefficient in the

VTI medium is introduced and used to calculate the relationship between the incident angle and

reflected amplitude. As a result, our expectation is confirmed through simulation of the relationship

between offset and the reflected amplitude in conjunction of the calculated change of the SH-SH

reflection coefficient with the incident angle.
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Figure 3.17: Received reflections for 8 evenly spaced receivers when there is a 90◦ angle difference
between the strike of reflector and the radiation of the directional source. The value in Y axis
denotes the receiver number.
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Figure 3.18: Cross-plot of normalized amplitude versus different receiver offsets in VTI medium.
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Chapter 4

A 3D pseudo-spectral method for SH wave simulation

Accurate and efficient numerical tools for modeling of seismic wave propagation in reservoir rocks

are becoming increasingly indispensable, in both research and industry settings, as full-waveform

processing and inversion methods are developed and refined. Representations of rocks that have

spatially-varying fracture orientations and densities, stress distributions, complex bedding, etc.,

via anisotropic models, are of particular importance. From previous chapter, the amplitude of the

SH- reflection wave indicates that in borehole acoustic logging environments, the SH energy is

strongest among the others. The SH- reflection can be used in the migration and imaging step to

obtain structure information such as azimuth. And the crosstalk caused by the interference from

other modes is expected to be significantly less in any subsequent SH-mode based full waveform

inversion (FWI) procedure. Furthermore, under idealized circumstances the SH-mode of the full

elastic wavefield propagates independently of the P-SV modes, and can be sensed approximately

independently in multicomponent experiments. For all of these reasons, 3D simulation of this

component of the full elastic response is simple, but also meaningful from the point of view of

data simulation.

4.1 Introduction

The most widely-applied numerical approach for modeling the propagation of seismic waves is the

FD method (Alterman and Karal, 1968; Alford et al., 1974; Kelly and Iversen, 1976; Madariaga,

1976; Virieux, 1986). SH-wave modeling using FD started as early as 1970, when it was applied

to SH-wave propagation in laterally inhomogeneous media Boore (1970a). This FD representa-

tion, however, does not satisfy the equations of motion (Boore, 1970b); Kummer and Behle (1982)

progressed matters with a second-order finite-difference modeling of SH-wave propagation in lat-
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erally inhomogeneous media. Virieux (1984) re-arranged the second-order hyperbolic SH-wave

equation into a first-order velocity-stress hyperbolic system in a generally heterogeneous medium.

However, he pointed out that a corner wave as well as a head wave would appear, which could have

severe consequences in applications such as migration. Moczo (1989) developed an explicit finite-

difference scheme using irregular rectangular grids for SH-waves in 2D media, which reduces

staircase diffractions and the number of grid points. Igel and Weber (1995) derived an axisymmet-

ric formulation to model SH-wave propagation in spherical coordinates to calculate seismograms

for global earth models. Slawinski and Krebes (2002) developed a finite difference scheme for

modeling SH-wave propagation in fractured media, in which fractures were modeled as internal

interfaces in nonwelded contact. The computational complexity and cost of this approach, be-

cause dense meshes are required when dealing with non-planar fractures, and when the distances

between fractures are smaller than the seismic wave length, impede its practical implementation.

In spite of major developments in, for instance, parallel computing technology, memory and

computational time are still the dominant limitations faced by users of FD methods. The Fourier

pseudo-spectral method (PSM) (Kosloff et al., 1984) generates numerical solutions with the same

accuracy as FD methods but with significantly fewer grid points, making it an attractive alternative.

PSM makes use of an accurate differentiation scheme, in which the fast Fourier transform (FFT)

is used for calculating spatial derivatives and finite differences are used for calculating the time

derivatives, which reduces memory usage and computation time (Fornberg, 1987; Daudt et al.,

1989).

The periodicity condition implied by the discrete Fourier transform causes the periodically ex-

tended wavefield on either side of the computational domain to propagate back from computational

boundaries, which results in wraparound artifacts. To avoid this, Fornberg (1996) suggested the

Chebyshev PSM be employed, which increases the grid density requirement to π nodes per mini-

mum wavelength. Alternatively, absorbing boundaries (Cerjan et al., 1985), or perfectly matched

layers (or PML, Collino and Tsogka, 2001) can be used to damp the wraparound phases through
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a gradual reduction of the wavefield amplitude in the vicinity of the grid boundary. Liu (1998)

combined the conventional Fourier PSM with perfectly matched layers (PML) to effectively elim-

inate the wraparound effect. Furumura and Takenaka (1995) pointed out that improper selection

of absorption parameters can result in reflected waves of relatively large amplitude. He proposed a

solution for this problem, involving an anti-periodic extension technique based on a simple modi-

fication of the wavefield, however, this method only partially eliminates wraparound.

PSM solutions also tend to exhibit non-causal ringing artifacts (Gibbs’ phenomena), partic-

ularly in the presence of large and/or abrupt changes in the medium. This occurs because the

Fourier transform is a global rather than a local operator: each wavenumber contributes to all

space. Smoothing is recommended by Pan and Wang (2000), and by Mast et al. (2001) and Tabei

et al. (2002), to alleviate this issue, but, because we are often specifically interested in the wave re-

sponse to rapid medium property variations, this solution is for many users incomplete. A variable

grid-density PSM (Liu, 1999; Liu et al., 2000) has been proposed, in which discontinuities in the

medium are better resolved. But, because this method employs a non-uniform fast Fourier trans-

form (NUFFT) algorithm, which includes an interpolation step, the improved resolution comes

at a cost to computational efficiency. An elegant mapping method to obtain spatial derivatives

was introduced by Bayliss and Turkel (1992); Gao et al. (2004) further established a general pro-

cedure to construct mapping curves. The choice of initial grid points is not straightforward, but

some rules for deciding on the positions of grid points were presented. Witte et al. (1987) pro-

posed a pseudo-spectral calculation on a staggered grid to suppress Nyquist errors (Özdenvar and

McMechan, 1996), and Bale (2002) developed a 3D, fully anisotropic scheme based on a decompo-

sition orthorhombic and non-orthorhombic stiffnesses. Yet, ringing artifacts were not completely

mitigated.

Classical finite difference approximations of time derivatives are subject to numerical disper-

sion (Özdenvar and McMechan, 1996). To mitigate this, the rapid expansion method proposed by

Kosloff et al. (1989) can be employed, after which a more accurate time integration is obtained.
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Similarly to Tal-Ezer et al. (1987), Bessel functions and modified Chebyshev polynomials are

incorporated in the method, expanding the cosine operator so that it is accurate and numerically

stable with large time steps. However, most of these approaches are designed for the solution of the

second-order acoustic wave equation, which impedes the direct use of PML boundary conditions.

Long et al. (2013) proposed a temporal fourth-order scheme to solve 2D first-order acous-

tic wave equations with perfectly matched layers in the time domain. In this chapter, we extend

this temporal fourth-order scheme to 3D SH-wavefield simulation in heterogeneous VTI media.

A Hybird-PML (Li et al., 2016) boundary condition (as described in Chapter 2) is combined

with a Fourier pseudo-spectral time-domain (PSTD) method to eliminate wraparound effects. A

staggered-grid based PSM is applied to spatial derivatives to eliminate the Gibbs’ phenomenon.

To make comparative conclusions, in this chapter, we also implement an SH-wavefield simulation

based on second order PSTD, with a sponge absorbing boundary condition (as described in Chapter

2) (Israeli and Orszag, 1981). The SH wavefield simulation results are also compared with those

obtained using the staggered-grid FD scheme. Finally, SH wavefield simulation in a 3D over-thrust

model is illustrated.

4.2 First-order SH wave equations in VTI media

In vertical transverse-isotropic (VTI) media (Thomsen, 1986), the elastic constants in matrix form

can be expressed as (2.7). Substituting equation (2.2),(2.3) and equation (2.7) into equation (2.1),

and making use of the equations of motion

ρ
∂ 2ux
∂ t2 = ∂σxx

∂x +
∂σxy
∂y + ∂σxz

∂ z ,

ρ
∂ 2uy
∂ t2 =

∂σxy
∂x +

∂σyy
∂y +

∂σyz
∂ z ,

ρ
∂ 2uz
∂ t2 = ∂σxz

∂x +
∂σyz
∂y + ∂σzz

∂ z ,

(4.1)
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we obtain the following VTI system:

c11
∂∇2·u2

∂x + c13
∂ 2uz
∂x∂ z + c66

∂

∂y

∂ux
∂y −

∂uy
∂x

+ c44
∂

∂ z

∂ux
∂ z −

∂uz
∂x

+ρω2ux = 0

c11
∂∇2·u2

∂y + c13
∂ 2uz
∂y∂ z + c66

∂

∂x

∂uy
∂x −

∂ux
∂y

+ c44
∂

∂ z

∂uy
∂ z −

∂uz
∂y

+ρω2uy = 0

(c13 + c44)
∂∇2·u2

∂ z + c33
∂ 2uz
∂ z2 + c44∇2

2uz +ρω2uz = 0

, (4.2)

where, ∇2 is the operator in the x-y plane, ∇2 = x̂ ∂

∂x + ŷ ∂

∂y , and u2 is the projection of u in the x-y

plane, u2 = x̂ux + ŷuy. The displacement can be decomposed into

u = ∇ϕ +∇× (χ ẑ)+∇×∇× (η ẑ), (4.3)

where, ϕ , η and χ are the scalar displacement potentials. Expanding equation (4.3) we have

ux =
∂ϕ

∂x +
∂ χ

∂y +
∂ 2η

∂x∂ z

uy =
∂ϕ

∂y −
∂ χ

∂x +
∂ 2η

∂y∂ z

uz =
∂ϕ

∂ z −
∂ 2η

∂x2 + ∂ 2η

∂y2

. (4.4)

Substitution of equation (4.4) into (4.2) yields

c11∇
2
2ϕ +(c13 +2c44)

∂ 2ϕ

∂ z2

+ρω
2
ϕ +

∂

∂ z

[
(c11− c13− c44)∇

2
2η + c44

∂ 2η

∂ z2 +ρω
2
η

]
= 0,

(4.5)

∂

∂ z

[
(c13 +2c44)∇

2
2ϕ + c33

∂ 2ϕ

∂ z2 +ρω
2
ϕ

]
−∇

2
2

[
c44∇

2
2η +(c33− c13− c44)

∂ 2η

∂ z2 +ρω
2
η

]
= 0,

(4.6)

and

c66∇
2
2χ + c44

∂ 2χ

∂ z2 +ρω
2
χ = 0. (4.7)

Equations (4.5)-(4.6) are coupled equations for ϕ and η (i.e., the P- and SV-wave potentials re-

spectively). The exact dispersion relation for P and SV waves in VTI media (derived by Tsvankin,

1996) is

v2(θ)

v2
P0

= 1+ ε sin2
θ − f

2
± f

2

[
1+

2ε sin2
θ

f

]1− 2(ε−δ )sin2 2θ

f (1+ 2ε sin2
θ

f )2

1/2

, (4.8)
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where θ is the phase angle measured from the symmetry axis, v(θ) is the phase velocity of the

coupled wave modes; ε , δ , and γ are the Thomsen parameters Thomsen (1986),

ε =
c11− c33

2c33
,

γ =
c66− c44

2c44
,

δ =
(c13 + c44)

2− (c33− c44)
2

2c33(c33− c44)
,

(4.9)

and f = 1−
(

vS0
vP0

)2
, where vP0 and vS0 are the P- and SV-wave velocities vP0 =

√
c33/ρ and

vS0 =
√

c44/ρ along the VTI symmetry axis. The plus and minus signs correspond to the P and

SV-waves, respectively. Equation (4.7) is the SH-wave equation in a VTI medium.

Let the vector v = [vx,vy,vz]
T be the particle velocity and X = [χx,χy,χz]

T be the displacement

in accordance with the split-field technique (Chew and Weedon, 1994; Collino and Tsogka, 2001).

The SH-wave equation can be described with the following first-order system

∂vx
∂ t =−c66

ρ
(∂ χx

∂x +
∂ χy
∂x + ∂ χz

∂x )

∂vy
∂ t =−c66

ρ
(∂ χx

∂y +
∂ χy
∂y + ∂ χz

∂y )

∂vz
∂ t =−c44

ρ
(∂ χx

∂ z +
∂ χy
∂ z + ∂ χz

∂ z )

∂ χx
∂ t =−∂vx

∂x

∂ χy
∂ t =−∂vy

∂y

∂ χz
∂ t =−∂vz

∂ z

. (4.10)

The system in equation (4.10) can be expressed in matrix form:

∂v
∂ t = A1X

∂X
∂ t = B1v

, (4.11)

where A1 and B1 are

A1 =


−c66

ρ

∂

∂x −
c66
ρ

∂

∂x −
c66
ρ

∂

∂x

−c66
ρ

∂

∂y −
c66
ρ

∂

∂y −
c66
ρ

∂

∂y

−c44
ρ

∂

∂ z −
c44
ρ

∂

∂ z −
c44
ρ

∂

∂ z

 , (4.12)
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and

B1 =


− ∂

∂x 0 0

0 − ∂

∂y 0

0 0 − ∂

∂ z

 . (4.13)

4.3 Staggered-grid Fourier pseudo-spectral derivatives

Although Luo (1994); Luo and Yedlin (1997) proposed using a peeudospectral time marching

method is used in second order equations, in this thesis, we will introduce another method. The

first-order Fourier derivative of a function u(x) can be discretized over a finite grid of N points by

(Witte and Richards, 1990)

Dxu(xi) = DFT−1
[
− jkxDFT [u(xi)]

]
, (4.14)

where j =
√
−1, and xi = i∆x, and i = 1, ...,N−1, with ∆x being the sampling interval. The quan-

tity kx = 2nπ/(N∆x) is the discrete wavenumber in the x direction. For even values of N, n should

be chosen as−N/2≤ n≤N/2, where n=−N/2 corresponds to the Nyquist wavenumber. For odd

values of N, we choose −N/2 < n < N/2. In this case the Nyquist wavenumber does not corre-

spond to one of the grid points. The operators DFT and DFT−1 are the forward and inverse discrete

Fourier transforms, respectively. In a homogeneous medium, the conventional Fourier derivative in

equation (4.14) is adequate, but Özdenvar and McMechan (1996) point out that instances of Gibbs’

phenomenon emerge when the waveform propagates through heterogeneous regions. Compared

with the conventional Fourier transforms, staggered-grid Fourier pseudo-spectral differentiation

reduces Gibbs’ errors caused by phase jumps at the Nyquist wavenumber. The staggered-grid

version of the first-order derivative of u(x) can be expressed, in terms of the half-grid-spacing

phase-shift of the standard Fourier derivative, as

D±x u(xi± 1
2
) = DFT−1

[
− jkxexp

(
∓ jkx4 x

2

)
DFT(u(xi))

]
, (4.15)
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in which ± implies forward versus backward differentiations. Similarly, high-order derivatives at

mid-points xi± 1
2

are given by

D±xmu(xi± 1
2
) = DFT−1

[
(− jkx)

mexp
(
∓ jkx4 x

2

)
DFT(u(xi))

]
, (4.16)

for odd m. When m is even, the mth derivative at the point xi is

Dxmu(xi) = DFT−1 [(− jkx)
mDFT(u(xi))] . (4.17)

Equation (4.11) can be approximated by

v
(
t + 1

2∆t
)
−v
(
t− 1

2∆t
)
≈ (∆tA1 +

1
24∆t3A1B1A1)X(t)

X(t +∆t)−X(t)≈
(
∆tB1 +

1
24∆t3B1A1B1

)
v
(
t + 1

2∆t
) . (4.18)

The spatial derivatives in the above equations can then be approximated by the Fourier derivatives

as

v
t+ 1

24t
x = v

t− 1
24t

x −
[
4t c66

ρ
D+

x + 1
244t3 c2

66
ρ2

[
D+

x3 +D+
x Dy2 +D+

x Dz2

]]
(χx +χy +χz)

v
t+ 1

24t
y = v
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y −
[
4t c66

ρ
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y + 1
244t3 c2

66
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]]
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ρ

1
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24t
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(4.19)

where χx, χy and χz are the components of scalar displacement potential χ , and χ = χx + χy + χz.

Stability and dispersion relations associated with the above equations are arrived at by summing

the split displacement potentials:

χ(t +4t) = χ(t)−
[(
4t

∂

∂x
+

1
24
4t3 c66

ρ

(
∂ 3

∂x3 +
∂ 2
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+

∂ 2

∂x2
∂

∂ z

))
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(
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1
2
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−
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24
4t3 c66

ρ

(
∂ 3

∂y3 +
∂ 2

∂y2
∂

∂x
+

∂ 2

∂y2
∂

∂ z

))
vy

(
t +

1
2
4t
)]

−
[(
4t

∂

∂ z
+

1
24
4t3 c44

ρ

(
∂ 3

∂ z3 +
∂ 2

∂ z2
∂

∂x
+

∂ 2

∂ z2
∂

∂y

))
vz

(
t +

1
2
4t
)] , (4.20)
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with vx
(
t + 1

24t
)
, vy
(
t + 1

24t
)
, and vz

(
t + 1

24t
)

being given by
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By eliminating the velocity components in equation (4.20), the scalar displacement potential equa-

tion can be expressed with temporal fourth-order accuracy as

χ(t +4t)−2χ(t)+χ(t−4t) = (r1s1 + r2s2 + r3s3)χ(t), (4.22)

where, r1,r2,r3 and s1,s2,s3 are expressed as

r1 =4t ∂
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The dispersion relation arising from equation (4.22) is

−4sin2
(

ω4t
2

)
= R1S1 +R2S2 +R3S3, (4.24)

with r1, r2, r3 and s1, s2, and s3 expressed in k-space as

R1 = ikx4t
(
1− 1

244t2kx (kx+ ky+ kz)
)

R2 = iky4t
(
1− 1

244t2ky (kx+ ky+ kz)
)
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)
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, (4.25)
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where k =
√

k2
x + k2

y + k2
z . Equation (4.24) allows us to write

0≤ sin2
(

ω4t
2

)
=

1
4
(R1S1 +R2S2 +R3S3)≤ 1. (4.26)

For a model with a uniform grid spacing in each direction (∆x = ∆y = ∆z), the Nyquist wave

numbers for each k-space coordinate satisfy kx = ky = kz =
π

∆x . We define the horizontal S-wave

velocity vsh such that vsh =
√

c66/ρ; because the S-wave velocity along the symmetry axis is

vs0 =
√

c44/ρ we have the relation

v2
sh = v2

S0(1+2γ). (4.27)

According to Wang (2001), γ < 0.2 in most weak anisotropic media, and in sedimentary rocks

the highest γ appears in shales (γmax=0.553). Assuming that γ ≤ 0.5, the stability condition is

expressed by the inequality

0≤ 1
4

π2

4x24t2v2
S0

[
2− 3

8
π2

4x24t2v2
S0 +

5
192

π4

4x44t4v2
S0

]
, (4.28)

or, to second order in ∆t,
vS0∆t
4x

≤ 4
√

3
3π

. (4.29)

4.4 H-PML boundary conditions

When a PSM is applied to wavefield simulation, computational boundaries tend to produce wrap-

around artifacts which must be suppressed. The perfectly matched layer (PML) approach to bound-

ary absorption, introduced by Berenger (1994), has been proven to be very efficient. Taking the

x direction as an example, a damping profile dx(x) is created, with dx = 0 in the physical domain

and dx > 0 in the PML layer. The new operator ∇x̃ = [ ∂

∂ x̃ ,
∂

∂y ,
∂

∂ z ] is introduced, where ∂

∂ x̃ = 1
sx

∂

∂x ,

sx = 1+ dx
iω .

The convolutional PML (or C-PML) method (Kuzuoglu and Mittra, 1996) and the complex fre-

quency shifted-PML (CFS-PML) method (Bérenger, 2002) introduce frequency-dependent terms,
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eliminating the requirement that the velocity-stress equation be split into separate terms. The C-

PML scheme involves adding not only the damping profile, but two other real variables, such that:

sx = κx +
dx

αx + iω
. (4.30)

When κx = 1 and αx = 0, the C-PML reduces to the classic PML form.

The multiaxial perfectly matched layer (M-PML) method has been found to be stable even for

media exhibiting very large degrees of anisotropy (Meza-Fajardo and Papageorgiou, 2008). In an

M-PML application, in contrast to equation (4.30), the sx term is

sx = κx +
dx +mx/ydy +mx/zdz

iω
, (4.31)

where mx/ydy and mx/z are weighting factors.

To maximize both accuracy and stability we construct a hybrid PML (H-PML) method, that

combines the advantages of both the C-PML and the M-PML through the optimization of the

damping profile (Li et al., 2016). Because the C-PML and M-PML are independent of one another,

the two can be straightforwardly hybridized by introducing

sx = κx +
dx +mx/ydy +mx/zdz

αx + iω
, (4.32)

so that a new differential operator in the x direction emerges:

∂x̃ = s̄x(t)∗∂x, (4.33)

where ∗ denotes convolution, and s̄x(t) is the inverse Fourier transform of 1/sx (Roden and Gedney,

2000; Komatitsch and Martin, 2007):

s̄x(t) = δ t
κx
− dx

κ2
x
e−(dx/κx+αx)tH(t) = δ t

κx
+ζx(t), (4.34)

and where δ t and H(t) are Dirac delta and Heaviside distributions, respectively. The operator in

equation (4.33) now becomes

∂x̃ =
1
κx

∂x +ζx(t)∗∂x. (4.35)
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Komatitsch and Martin (2007) replace equation (4.35) with

∂x̃ =
1
κx

∂x +ψx, (4.36)

where ψx is a memory variable updated at each time step n:

ψn
x = bxψn−1

x + cx(∂x)
n−1/2, (4.37)

in which

bx = exp
[
−
(

dx +mx/ydy +mx/zdz

κx +αx

)
4t
]

cx =

[
dx +mx/ydy +mx/zdz

κx
(
dx +mx/ydy +mx/zdz

)
+κxαx

]
(bx−1) .

(4.38)

The coefficient matrices in equations (4.12) and (4.13) are therefore expressed as

A1 =−


c66
ρ

c66
ρ

c66
ρ

c66
ρ

c66
ρ

c66
ρ

c44
ρ

c44
ρ

c44
ρ




1
κx

∂x +ψx

1
κy

∂y +ψy

1
κz

∂z +ψz

 , (4.39)

and

B1 =


−
(

1
κx

∂x +ψx

)
0 0

0 −
(

1
κy

∂y +ψy

)
0

0 0 −
(

1
κz

∂z +ψz

)
 . (4.40)

If the elastic parameters and the density are spatially invariant, they can be directly incorporated

in each Fourier derivative without introducing artifacts. In heterogeneous media (e.g., in layered

media), they must be incorporated in the space domain in order to avoid Gibbs’ artifacts.

4.5 Numerical examples

In this section, we present several numerical examples whose purpose is to validate and verify

important features of the combination of H-PML and PSM used for SH wave simulation developed

in the previous sections. We focus on stability, Gibbs’ artifacts, and boundary reflections.
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Figure 4.1: The 3D layered anisotropic model containing displacement wavefield snapshots in
cross-sectional planes; in each panel propagation time progresses, starting at 0.2s and ending at
0.35s. The left-hand layer of the model (y < 600m) is a VTI medium. The right-hand layer
(y > 600m) of this model is purely isotropic.

4.5.1 Two-layer model

We make use of a two-layer medium to carry out benchmarking. The computational grid is 291×

191×241 with grid spacing 4x =4y =4z = 5m, including one H-PML layer of 15 grid points

beyond each computational boundary. Waves are initiated with a dipole source comprised of two

Ricker wavelets with central frequency f0 = 30Hz. Based on the stability condition in equation

(4.29), we select the time step4t = 1×10−3s. The structure of the model is illustrated in the four

panels of Figure 4.1. The left-hand layer of the model (y < 600m) is a VTI medium with elastic

57



constants

C =



26.37 10.57 9.57 0 0 0

10.57 26.37 9.57 0 0 0

9.57 9.57 36.73 0 0 0

0 0 0 12.45 0 0

0 0 0 0 12.45 0

0 0 0 0 0 8.08


×109N/m2. (4.41)

The right-hand layer (y > 600m) of this model is purely isotropic, with P- and S- wave velocities

2300m/s and 1000m/s respectively. The densities of the layers are 2500kg/m3 (left) and 2000

kg/m3 (right). In the four panels of Figure 4.1, wavefield snapshots (y = 400m for x-z plane

snapshots; x = 250m for y-z plane snapshots; z = 700m for x-y plane snapshots) are plotted for

propagation times t = 0.2s , 0.25s, 0.3s and 0.35s. The dipole source is oriented in the x-direction,

and the SH wave is polarized in the horizontal plane.

Figure 4.2: SH wavefield snapshots computed using the PSTD staggered-grid method with
H-PML. Left to right: snapshot times 0.2s to 0.35s. Top row: x-y plane, lateral component; bottom
row: x-z plane, vertical component.

In Figure 4.2, snapshots for SH propagation in x-y (lateral) and x-z (vertical) sections are plot-
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Figure 4.3: SH wavefield snapshots computed using the second order PSTD method with a sponge
absorbing boundary. Left to right: snapshot times 0.2s to 0.35s. Top row: x-y plane, lateral
component; bottom row: x-z plane, vertical component.

ted. For comparison, in Figure 4.3, snapshots for SH propagation in identical sections using a

second-order PSTD method with a sponge absorbing boundary are illustrated. At t = 0.2s, all

snapshots obtained by the method we have introduced in this thesis contain waveforms without

noticeable wrap-around at the computational boundaries; in contrast, those associated with the

second order PSTD method at the same time, illustrated in Figure 4.3, exhibit significant wrap-

around. At t = 0.25s, the second order PSTD wavefield exhibits Gibbs’ artifacts at and around the

reflection model. At t = 0.35s, the snapshots obtained by second order PSTD method may also

be observed to exhibit boundary reflections. In contrast, neither wrap-around nor Gibbs’ artifacts

appear as the wavefield, computed using the new approach, evolves. We next illustrate individual

traces as synthesized by the new staggered-grid PSTD and conventional PSTD methods. In Figure

4.4, the positions of four sensors within the velocity model are illustrated; the blue surface is the

interface, and the blue-red circle pair illustrates the position and orientation of the dipole source,

which radiates in the x-direction. In Figure 4.5, waveforms recorded at the four receivers are plot-

ted for both the conventional and newly-proposed PSTD method (receivers A-D). Receiver pairs
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Figure 4.4: The 2-layered model with source-receiver positioning. The blue surface is the physical
interface. A, B, C and D denote the receiver locations.

(A,B) and (C,D) are symmetrically located on either side of the dipole, so events appear in pairs

with the same arrival times but opposing amplitudes. The large event appearing before 0.1s in

each trace is the direct arrival. The two methods compare quite well for these arrivals, apart from

some differences in the side-lobes, with oscillations dying down rapidly in both cases. The next

event, occurring at about 0.18s in each trace, is the arrival associated with the reflection from the

interface. The amplitudes of these reflected arrivals calculated by the conventional PSTD method

are smaller than those obtained by the staggered-grid PSTD. Also, Gibbs’ phenomena appear and

persist for significant intervals (as indicated with dashed rectangles), i.e., non-negligible errors ap-

pear even far from the reflected event. The conventional PSTD method also exhibits significant

boundary reflection artifacts (dashed ovals in Figure 4.5).
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Figure 4.5: Trace comparisons between the conventional (blue) and proposed (red) PSTD methods,
recorded at receiver positions A-D. Artifacts are indicated with dashed boxes/ovals.

In Figure 4.6, the recorded waveforms sensed at receiver positions A-D, computed by the

staggered-grid FD method and the new proposed PSTD method, are compared. From equation

(4.10) and the first order velocity-stress wave equation, ∂vx/∂ t and ∂τxx/∂ t are equivalent. There-

fore, comparison between the normal stress component τxx obtained by the staggered grid FD

method and vx as calculated by our new PSTD is appropriate. The large arrival near 0.1s is again

the direct arrival. The two methods match well near their peaks, but the FD method output pro-

duces sustained oscillations out to almost 0.2s, the time at which the reflected-wave signals arrive;

notice that the reflection peak as generated by the FD approach is difficult to identify in the receiver

A and B traces. In contrast, oscillations die down abruptly in the traces computed with the new

PSTD method, and the reflections can be identified near 0.18s.

By equation (4.19), ∂ χi/∂ t is equivalent to vi, so for the waveforms received at C and D

we compare the quantities vx as obtained through the staggered grid FD method, and ∂ χx/∂ t as

calculated by the new PSTD method. The two methods match well in their computation of the

direct arrivals at receiver D, but, at receiver C, the staggered grid FD method generates strong side

lobes on the direct arrival; oscillations decay rapidly in the output of the staggered-grid PSTD

method. Reflection signals for both methods overlap at about 0.18ms.
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Figure 4.6: Trace comparisons between the staggered-grid FD and proposed PSTD methods,
recorded at receiver positions A-D.

Displacement components, as computed by any finite difference methodology, including the

new method discussed here, are important for certain applications, for instance simulation in full

waveform inversion. The quantity ∂ χi/∂ t is the velocity component vi in the ith direction, which

can be obtained during the updating of displacement components (as indicated in equation (4.19)).

The velocity components are not available through the conventional PSTD method, and the dis-

placement components for each direction can not be directly updated through a staggered-grid FD

method. As is discussed in a companion paper (Li et al., 2017), the source implementing with

different components in both forward simulation and time reversing procedure plays an important

role in the gradient calculation, which in turn, influences the FWI results. Based on our results,

different sources are sensitive to different formation parameters.

4.5.2 3D thrust fault anisotropic model

In this section, a heterogeneous anisotropic model with complicated thrust faults is used to examine

the stability of the new scheme. The model is part of a thrust fault system. We extend a 2D thrust

fault model (with variation in the x-z plane) in the y direction to create the 3D model.

The model is 1000m× 800m× 1400m with a grid of 200× 160× 280. The first layer of the
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model is isotropic, with P-wave and S-wave velocities at 2400m/s and 1280m/s respectively. The

vertical P-wave velocity of the model ranges from 2400 m/s in first layer to 6000 m/s in the bottom

layer. The source is an x-oriented dipole which emits a Ricker wavelet with dominant frequency of

30Hz. The space and time intervals used in this model are 5m and 1ms respectively. The maximum

space and time intervals used for the second order in time/fourth-order in space finite difference

method are 4m and 0.3ms respectively.

In Figure 4.7 the wavefield is plotted at various times during propagation. The dipole source is

composed of two monopoles which are positioned at (120 m, 480 m, 675 m) and (130 m, 480 m,

675 m). In Figures 4.8-4.9, the SH wavefield snapshots in x-z plane for z- and x-components are

plotted respectively. As time evolves, the SH wave passes from the isotropic regions of the model

into the anisotropic layered regions without generating wrap-around errors. No evidence of Gibbs’

phenomena appears.

Figure 4.8: Snapshots for SH propagation in x-z plane (z-component).
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Figure 4.7: Snapshots for SH wave propagation in the thrust fault model with ∆t = 10µs. The
dipole source is composed of two monopoles which are positioned at (120 m, 480 m, 675 m) and
(130 m, 480 m, 675 m).

4.6 Discussion and conclusions

A temporal fourth-order scheme for solving the elastic SH wave equations in VTI media has

been proposed, which is designed to suppress the wrap-around and Gibbs’ artifacts that have

been observed in other methodologies when waves propagate through heterogeneous formations—

especially in the presence of large and abrupt changes in the medium properties. The efficiency of

the new method is slightly reduced in comparison with the conventional PSTD using second order

centered-grid Fourier derivatives, because of the requirement for calculation of Fourier deriva-

tives using high-order staggerer-grid method. H-PML can be successfully incorporated after the

SH wave equation has been reduced into a set of first-order equations, which eliminates wrap-

around artifacts. Numerical comparisons carried out within a two-layer model between the new

approach and conventional second-order schemes illustrates significant reduction of both wrap-
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Figure 4.9: Snapshots for SH propagation in in x-z plane (x-component).

around and Gibbs’ artifacts. Further experiments on a 3D anisotropic thrust fault model introduce

no heterogeneity-based errors.

The stability condition for this scheme is also discussed. Given a specific spatial interval that

meets the requirement for the PSTD, the maximum time step can be determined. In comparison to

second-order in time/fourth order in space staggered grid finite difference methods, larger intervals

in both space and time are available, which has a significant positive effect on computational

expense. However, its efficiency is reduced by the requirement for the calculation of first-order

Fourier derivatives rather than second order Fourier derivatives directly.

The new computational scheme was inspired by previous studies of SH amplitudes in borehole

environments. Its promising features, and the fact that it is expressed conveniently in terms of dis-

placement and velocity components, has led us to consider its use in migration and full waveform

inversion, which is ongoing work.
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Chapter 5

Reflection extraction from sonic log waveforms

5.1 Introduction

For acoustic reflection imaging, another critical procedure is to effectively extract the reflection sig-

nals from the acoustic full waveforms in acoustic reflection well logging data processing. Hornby

(Hornby, 1989) presented data processing and imaging methods involving secondary compression

arrivals to form an image of the formation structures, in which a frequency-wavenumber transform

is used for elimination of the direct arrivals and other sources of noise. However, because the

amplitudes of reflected waves are generally small compared to those of direct waves, it is difficult

to extract them from the acoustic full waveforms. Several techniques have been used to extract

reflections from acoustic data. Hornby (Hornby, 1989) proposed an f-k filtering method to extract

reflections from direct waves. Li et al. (2002) used a combination of FK and median filtering tech-

niques for reflection extraction in single-well imaging with acoustic reflection survey. The median

filter is used to remove direct waves, and then the FK filter is applied to separate downgoing and up-

going reflections. Tang (2004) and Zheng and Tang (2005) used the parametric prediction method

to extract reflection waves from waveforms. When this did not achieve satisfactory results, a ge-

ometric spreading factor was introduced to modify the parametric prediction method (Bing et al.,

2011). The blind source separation (BSS) was also introduced to borehole geophysics (Li et al.,

2014a) to extract reflections. However, amplitude information is missed using BSS, which makes

it difficult to obtain ideal reflections by simply deducting the extracted head waves by applying

BSS from the full waveforms.

The Karhunen-Loève (KL) transform has been widely used in data analysis such as image

compression (Ahmed and Rao, 2012) and image coding (Andrews and Patterson III, 1976). The KL

transform has also been used in seismic exploration for signal-to-noise improvement and separation
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of diffractions from reflections (Yedlin et al., 1987). Hsu (1990) applied the KL transform to sonic

logging waveforms to extract direct waves, combining a threshold detection scheme and the KL

transform to exclude the unwanted signals. Here we discuss the application of the KL transform

to the acoustic reflection well logging problem, to separate reflections from P- and S-head waves,

and others such as the pseudo-Rayleigh wave, the water wave, the Stoneley wave, etc. We find

that when extracting reflection signals using energy difference conditions (the direct waves have

higher energy than do the reflections), the unwanted signals can be eliminated by choosing a wide

processing window, within which a precise threshold is not necessary. The main obstacle we face

is that, when borehole irregularities, permeable fractures and formations exist around a borehole,

they will tend to excite the so-called Stoneley wave reflection (Paillet and White, 1982; Hornby

et al., 1989). These Stoneley reflections cannot be suppressed along with the direct Stoneley wave

by using the KL transform. We manage this problem in the simplest way we can, by applying a

bandlimiting filter as a first step, to suppress the low frequency direct and reflected Stoneley waves.

In order to examine the reliability of reflection extraction using the KL transform in acoustic re-

flection logging data, synthetic well-logging data, simulated with a finite difference (FD) method,

and laboratory sonic tool acquisition data acquired in a water tank are created as input and pro-

cessed. The results are compared with those obtained by the multi-scale slowness-time-coherence

(MSTC) method (Tao et al., 2008b). A field data case is also examined and images formed using

the reflections are analyzed as a means to validate the approach.

5.2 Karhunen-Loeve(KL) Transform

A typical sonic log can be expressed as an m×N matrix X = [x1 x2 · · · xN ], in which each

vector element xi = (xi1,xi2, · · ·,xim)
T , (i = 1,2, · · ·,N) can be treated as a recorded waveform at

a specific depth, where m is the total recording time of a waveform and N is the total number of
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recorded waveforms. The mean vector of this m×N matrix is

µ =
1
N

N

∑
i=1

xi, (5.1)

where, µ = (µ1,µ2, · · ·,µm)
T .

Expanding the mean vector µ into an m×N matrix µe = [µ µ · · · µ], the m×m covari-

ance matrix of X thus can be expressed as

CX =
1
N

N

∑
i=1

(xi−µ)(xi−µ)T , (5.2)

where ·T denotes the transpose of a matrix. Assuming λ j,( j = 1,2, · · ·,m) to be the eigenvalue

spectrum of the covariance matrix, each eigenvalue belongs to one of the system of eigenvectors

e j,( j = 1,2, · · ·,m), where each e j is a row vector. There is an m×m orthogonal matrix A such

that:

A =
[
eT

1 eT
2 eT

3 · · · eT
m
]T

, (5.3)

with λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λm. The eigenvectors are ordered so that the first row of A is the

eigenvector belonging to the largest eigenvalue, and the last row is the eigenvector belonging to

the smallest eigenvalue. Therefore, we may write an m×N matrix equation embodying the forward

definition of KL transform

Y = A(X−µe), (5.4)

and

yi = A(xi−µ). (5.5)

yi = (yi1,yi2, · · ·,yim)
T denotes each component of Y , i = 1,2, · · ·,N. The covariance matrix of Y is

CY = ACX AT =



λ1 0 · · · 0

0 λ2 · · · 0
...

... . . . · · ·

0 0 · · · λm


. (5.6)
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In this particular case, we find that the eigenvalues and eigenvectors of CY are the same as

those of CX . And since in this case, the off-diagonal elements are 0, which means the elements

of Y are uncorrelated. This makes it possible to eliminate signals with small amount of energy to

approximate the original signals. Because A is an orthogonal matrix (A−1 = AT ), multiplying both

sides of equation (5.4) by AT , the m×N matrix X can be described as

X = ATY +µe. (5.7)

The above equation is treated as the “inverse” KL transform. Next we consider approximations

based on the first k largest eigenvectors

Â =
[
eT

1 eT
2 eT

3 · · · eT
k
]T

, (5.8)

with λ1 >= λ2 >= λ3 >= · · ·>= λk, k < m.

Based on this approximation Â of A, an approximation of matrix X with dimensions of k×N

can be obtained with

X̂ = Â
T

Ŷ +µe, (5.9)

and

x̂i = ÂT yi +µ. (5.10)

where x̂i are the vector columns of X̂ and Ŷ i are the first k×N of Y . The mean square error between

X and X̂ is

ε(k) = E{(X− X̂)T (X− X̂)}= 1
m− k

m

∑
i=k+1

xixT
i . (5.11)

In geophysical signal analysis, the received signal is usually considered as a zero mean value

(Saggaf and Robinson, 2000), which means µ equals to 0. Therefore, the mean square error will

be minimized when

CX ei = λiei, i = k+1, · · ·,m. (5.12)

Therefore, we have

ε(k) =
m

∑
i=k+1

λi. (5.13)
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This equation provides a way to determine the confidence level while choosing the number of

k, which will be discussed in detail in the later section of this chapter. The matrix as approximated

in equation (5.9) can in this way be used to reconstruct the original signal, if and only if the mean

square error approaches 0. This means, if the k most dominant eigenvectors are used to reconstruct

the original information, the dominant energy will be preferentially included. This is the basis of

KL transform methods. In acoustic reflection logging, most of the energy comes from the direct

P-, S- and Stoneley waves, which we will assume can be extracted from measured waveforms by

means of KL transform. The residuals should then be dominated by reflections, which can be used

after extraction in acoustic reflection imaging.

5.3 Wave Separation Using KL Transformation

5.3.1 Synthetic testing

To examine the accuracy of the reflection extraction from sonic logging by KL transform,a syn-

thetic data set is created with a numerical finite difference (FD) method. The model is illustrated in

Figure 5.1. We make use of the term depth to indicate the standard up-down direction, but because

the borehole reflection experiment is rotated 90◦ from a standard surface experiment, the lateral

position will be referred to as lateral depth. The model is a fluid-filled borehole with a fault-like

interface lying to one side of the borehole with a dip of 45◦. The model is 15m in depth and 10m

in lateral depth, and the borehole, whose diameter is 0.2m, is located at the lateral depth of 1 m

(in blue in Figure 5.1). The formation in red will be referred to as medium I and that in yellow as

medium II. The acoustic reflection logging tool is designed to have a source-receiver spacing of

3m, and a total of thirteen receivers, evenly spaced, with an interval of 0.15m. The borehole and

formation parameters are given in Table 5.1.

Table 5.1: Parameters of fault-like model outside the borehole
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c11 c13 c33 c44 ρ(g/cm3)

Yellow 23.87 9.79 15.33 2.77 2.5

Borehole 2.25 2.25 2.25 0 1

Red 40 13.55 40 13.225 2.5

Data are simulated for 60 source points, starting at a depth of 5m and ending at 13.85m with a

shot interval of 0.15m. A 2D FD numerical modelling scheme is used to simulate full waveforms

as measured by the acoustic array at each source point. Figure 5.2 (left panel) shows the measured

waveform when the dip angle is 45◦. The full waveforms shown in Figure 5.2 are signals recorded

by the nearest receiver(3m away from the source). The total recording time is 15ms. Because of

the slow formation outside the borehole, the first arrival is a leaky P-wave (Haldorsen et al., 2006);

the water wave (whose velocity is roughly 1500 m/s) propagating in the borehole fluid arrives

behind the P-wave; the signal behind the water wave arrival is the Stoneley wave. No shear wave

propagates in the borehole in the slow formation, in accordance with Snell’s law. The reflections in

this simulated data set can be obtained by subtracting it from the full waveform computed without

the interface (Figure 5.2, right panel).

If a KL transform is applied in a window from 0ms to 5ms, the first principal component is ex-

pected to be the Stoneley wave, the coherent arrival with the highest amplitude. Figure 5.3 shows

the four dominant normalized eigenvectors of the covariance matrix calculated from the selected

range of full waveforms (the normalized eigenvectors are obtained using equation (5.2)). Com-

pared with the take-off time of each event as shown in Figure 5.2 (left panel), the first dominant

eigenvector consists not only of the Stoneley component (i.e., the event at about 3ms), but also of

the water wave arrival (the event at about 2.5ms). The eigenvalue of the first dominant eigenvector

is 0.9884 (which represents over 98% of energy). The second largest eigenvalue is 0.0031 (we

will see in the following discussion that the energy of this eigenvector comes from the lower inter-

face 4m away from the borehole). The other eigenvectors contribute so little to the first principle

component that they can be ignored.

71



Lateral Depth (m)

D
ep

th
 (

m
)

Dip Angle=45(deg)

 

 

0 2 4 6 8 10 12

0

5

10

15

*

0.15 m

3 m

Figure 5.1: Synthetic model: Blue area is the borehole. Yellow and red areas are two formations
with different properties.

Therefore, the first principal component can be largely reconstructed using the first dominant

eigenvector, as shown in Figure 5.4 (left panel). The earliest linear arrival is the water wave; the

second linear arrival is the Stoneley wave, compared with the arrival times of each event in Figure

5.2 (right panel). Figure 5.4 (right panel) shows the covariance residuals after the first principal

component is subtracted. The reflected waves have become visible, arriving shortly after what will

now be the new principal component (the direct P-wave arrival).

In order to suppress the new dominant component of the signal, the P-head wave, the same

time window from 0ms to 5ms is applied to calculate the covariance matrix of the waveform. Its

four dominant eigenvectors are plotted in Figure 5.5 (left panel).

The first eigenvector has a normalized eigenvalue of 0.9731 (which, with the stronger arrivals

now removed, we associate with the P-wave energy). Therefore, the first dominant eigenvector is

used to reconstruct the P-wave, as shown in Figure 5.5 (left panel). Figure 5.6 (right panel) shows

the residuals after the P-wave component has been removed, which are identifiable as being the
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Figure 5.2: Received full waveform when the dip angle is 45 degree (Left) and theoretical refection
signals by subtracting the full waveform of this synthetic model from that of a model without the
interface (Right). The data is received by the first receiver.

reflections with the direct P-wave, water wave and Stoneley wave largely removed. Compared with

the theoretical reflections shown in Figure 5.2 (right panel), almost all the reflection details have

been revealed.

We next compare these results with the reflections extracted using the multi-scale slowness-

time-coherence (MSTC) approach (Tao et al., 2008b), which is also displayed in Figure 5.6 (left

panel), where some details of the reflection signals are missing and low frequency noises appear

during the whole recording time.

We next compare, trace-by-trace, the exactly-separated benchmark events in the simulated data

against those of the KL-separation method. Figure 5.7 illustrates the direct waveforms (red), true

reflections (black) and reflections from KL transform (blue) at different recording depths from (a)

3.5m, (b) 5.75m, (c) 8m and (d) 9.5m, respectively. In Figure 5.7a the direct events do not overlap

with the reflections, because the upper interface is 7m away from the borehole, which makes it

easy to differentiate the reflections from the direct waves. Here the KL reflections precisely match

the true reflections. In Figures 5.7b-d the situation is more complicated, because the events to
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Figure 5.3: (a) Waveforms received by the receiver when there is no reflected signals. (b) Full
waveforms recorded by the receiver when reflections are present. (c) Four dominant normalized
eigenvectors of covariance matrix calculated from windowed waveforms. The processing time
window is from 0ms to 5ms. The eigenvalues of each eigenvector are also shown.

be separated overlap significantly (between 2.5ms to 5ms). Nevertheless the extracted reflections

using the KL transform match with the true reflections at all depths with no apparent flaws. The

reason for this is also apparent: the first reflection wave packets in each of Figures 5.7c-d are

essentially completely captured by the second eigenvector, as plotted in Figure 5.3.

Finally, the borehole reverse time migration(RTM)(Li et al., 2014b) is applied. The migra-

tion results using reflections extracted by both the KL transform method and MSTC method are

illustrated in Figure 5.8. The velocity model used in the RTM is the same as in Table 5.1, except

there’s no red formation outside the borehole. Figure 5.8a is the RTM result using the reflections

extracted by the KL transform method, the fault-like interface is clearly observed. Figure 5.8b

shows the RTM result using the reflections extracted by the MSTC method. As is pointed out in

the circle areas, some noise is detected.

74



Time (ms)

D
ep

th
 (

m
)

0 5 10 15

3.5

5

6.5

8

9.5

11

Time (ms)

D
ep

th
 (

m
)

0 5 10 15

3.5

5

6.5

8

9.5

11

Stoneley Wave

Water Wave

Figure 5.4: First principal component of the raw data (Left) and residuals after principal component
has been removed (Right).

Time(ms)

D
ep

th
 (

m
)

0 5 10

3.5

5

6.5

8

9.5

11
0 5 10 15

2

4

6

8

10

12

14

16

18

20

22

Time(ms)

0.0013

0.0034

0.0076

0.9731
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Figure 5.6: Reflections extracted using MSTC (Left) and KL transform (Right).

5.3.2 The determination of the k value in the KL transform

Based on the principles and synthetic tests in the previous two sections, a key issue for this method

is how to choose the value of k with which to approximate the original data. In this section, we will

analyze the relationship between the k value and the energy distribution of the signals transmitted

by the source in the borehole.

When the transmitter is set off in a borehole, energy spreads out in all directions. The com-

pressional wave is generated and emitted in the borehole fluid. It reflects back or transmits (or

refracts) into the near borehole formation when it meets the borehole wall. When the incident an-

gle θ reaches critical, critically-refracted waves propagate along the interface and compressional

and shear head waves are created(Close et al., 2009). The P- and S-head waves travel with forma-

tion velocities and are received by the receivers in the borehole. A schematic of the wave modes

is shown in Figure 5.9a. Figure 5.9b illustrates the generation of the P-head wave. Pf is the com-

pressional wave in the borehole fluid, θ is the incident angle, P1 and S1 are the refracted P- and

S-waves in the formation respectively. When the incident angle reaches to the critical angle, the

refracted P-wave will travel along the interface with the formation P-wave velocity, which will

further transformed into P-head wave (Pf P1Pf ) received by the receiver.
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Figure 5.7: Comparison of the direct waveforms (red), true reflections (black) and reflections from
KL transform (blue) at recording depths from 3.5 m (a), 5.75 m (b), 8 m (c) and 9.5 m (d).

Figure 5.8: RTM results when (a)reflections extracted by the KL transform method are used and
when (b)the reflections extracted by the MSTC method are used.
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As illustrated in Figure 5.9, although most of the wave energy is trapped in the borehole, a

small amount leaks into the formation in the forms of P- and S-transmitted(refracted) waves. The

percentage of energy leaked is related to the formation parameters. Table (5.2) enumerates the

parameters for borehole fluid, fast and slow formations, respectively.

Table 5.2: Parameters of the borehole fluid and formations outside borehole.

Vf (m/s) VP(m/s) VS(m/s) ρ(g/cm3)

Borehole 1500 - - 1.0

Fast formation - 4500 2500 2.5

Slow formation - 2300 1100 2.0

For a P-wave incident in the borehole fluid, and with particle displacement reflection and trans-

mission coefficients expressed as R and T, we denote the P-wave reflection coefficient and the P-

and S-wave transmission coefficients as RPP, TPP, and TPS respectively. Let AI , AR and AT be

the amplitudes of the incident, reflected and refracted P-waves, and BT be the amplitude of the

refracted S-wave. The particle displacement reflection and transmission coefficients are:

RPP = AR/AI, TPP = AT/AI, TPS = BT/AI. (5.14)

The plane-wave reflection and transmission coefficients are plotted in Figure 5.10. For the fast

formation (Figure 5.10a), the critical angle for the P-wave reflection is 19.47◦; for larger incident

angles, the refracted P wave will travel along the fluid-solid interface in the form of a P-head wave

(Cerveny and Ravindra, 1973). When the incident angle reaches 36.87◦, the refracted S-wave will

begin propagating as a head wave as well. In the slow formation (Figure 5.10b), the refracted P

wave is converted to a P-head wave when the incident angle reaches 40.71◦. There is no S-head

wave.

To relate wave reflection and transmission to energy conservation, we introduce the energy re-

flection coefficient R and energy transmission coefficient T defined as the fraction of the incident
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energy that is reflected and transmitted, respectively. The conservation of energy can be expressed

as

RPP +TPP +TPS = 1. (5.15)

where

RPP = |AR
AI
|2,

TPP =
(

ρ2VPcosθ2
ρ f V f cosθ1

)
|AT

AI
|2,

TPS =
(

ρ2VScosφ2
ρ f V f cosθ1

)
|BT

AI
|2.

(5.16)

In Figure 5.11, we plot the energy reflection and transmission coefficients with respect to inci-

dent angle. For a liquid-solid interface, Donato (1964) calculates the amplitude of P-head waves.

As is also pointed out by Heelan (1953), the energy of head waves is derived entirely from the

refracted waves. Consider the P-head wave in the fast formation as an example (Figure 5.11a).

When the incident angle reaches to the P-wave critical angle (19.4712◦), the P-wave energy trans-

mission coefficient decreases to 0.2 (normalized assuming unit incident energy). According to

Heelan (1953), it is this part of the wave energy that induces the P-head wave and that is received

by the receiver in the borehole. For incident angles larger than the critical angle, at which P-head

waves make up the received signal, the energy is above 0.4. The transmitted P-wave, before the

critical angle, has, according to Figure 5.11a, an average energy of 0.3; when this part of the energy

travels outside the borehole, it will propagate back after impinging on external structures. Suppose

the energy reflection coefficient is the same as that in 5.11a. Then, energy in the amount of 0.3×0.6

will be reflected back. Subsequently, the borehole wall acts as a third interface, reducing further

the reflected energy. Within the incident angle range 0-20◦ for effective transmitted P-wave, the

estimated Pf P1P1Pf reflection energy is less than 0.02. The ratio of P-reflected to head wave energy

is about 0.95.

Based on this approximate calculation, we set our confidence level or k value at 0.95. When
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Figure 5.9: Figure (a) illustrates sonic waveform propagation in a borehole. In fast formation, the
wave modes received by the receivers in the borehole are P-head wave, head-Shear wave, direct
wave and Stoneley wave as a function of time. Figure (b) shows the generation of P-head wave,
which is composed of Pf P1Pf

the sum of the first k eigenvalues reaches 0.95, we assume that k eigenvectors are sufficient to

approximate the principle wave mode. In this thesis, the confidence level of 0.95 is used.

5.4 Examples

5.4.1 Laboratory data example

In this section, the laboratory data is acquired in a specially designed large water tank by the remote

exploration acoustic reflection imaging (Chai et al., 2009). The reflector in the water tank is a steel

pad placed at an angle of 20◦ relative to the measurement axis, a distance of 3m away from the

tool. The depth interval is 0.1524m and the distance between the source to the first receiver is

5.3m. The schematic diagram of the water tank model is shown in Figure 5.12.

The waveforms recorded by the first sensor are plotted in Figure 5.13 (left panel). The 900m/s

event at roughly 6ms has the highest energy. The compressional head-wave event occurring at
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Figure 5.10: P- and S-wave reflection and transmission coefficients vs. angle of incidence for (a)
fast formation and (b) slow formation.
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Figure 5.11: P- and S-wave reflection and transmission coefficients vs. angle of incidence for (a)
fast formation and (b) slow formation.
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Figure 5.12: Water tank model with a size of 15m×50m. The source-receiver spacing of the sonic
tool in the tank is 5.3m. A roughly 2m long steel pad is located 3m away from the tool with a dip
angle of 20◦ towards the vertical direction.

roughly 4ms has a velocity of 1400m/s. The data exhibit low-frequency noise in early part of

the waveform. Figure 5.13 (right panel) shows the reflection extracted using the MSTC method.

The reflections from the steel pad emerge, but are accompanied by significant residual direct-wave

energy along the depth interval.

We next apply the two-step KL methodology to isolate reflections on the same data set. After

setting the first window range to be 4-8 ms, the eigenvalue matrix is obtained. The largest four

eigenvalues are 0.6938, 0.2486, 0.0296 and 0.0073, respectively. To satisfy the confidence level,

we allow the first three eigenvalues to approximate the energy of the first principle component. In

Figure 5.14 (left panel), the first principal component extracted by the KL transform is plotted. It

matches very closely with the event at 6 ms in Figure 5.13. Figure 5.14 (right panel) shows the

residuals after the principal component is removed. The weak reflection from the steel pad emerges
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Figure 5.13: Received full waveform of the water tank data (Left) and reflection signals using
MSTC (Right).

in the residual waveforms, yet the low-frequency noise at the beginning and the compressional

head-wave still dominate.

Figure 5.15 (left panel) shows the secondary principal component extracted by the KL trans-

form, which takes place after the low frequency noise has been removed by a high bandpass filter

(the same high bandpass filter procedure is also applied in MSTC method). The eigenvalue matrix

is obtained for 1-8ms window. The largest four eigenvalues are 0.7373, 0.1774, 0.0188 and 0.0172,

respectively. These four eigenvalues are used to approximate the energy of the first principle com-

ponent. This component is the fluid wave. Figure 5.15 (right panel) shows the reflection signals

from the steel pad after the secondary component is removed. Compared with the result obtained

using MSTC, there is no residual noise visible, and the reflection has been cleanly extracted.

When a well bore intersects geological structures, the measured full-wave acoustic-logging

data can be used to image the formation structures. In this water tank data, the borehole RTM is

applied, in which a staggered grid finite difference method is used for the forward and backward

propagation operators. The imaging result using reflections extracted by KL transform is shown
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Figure 5.14: First principal component of the raw data (Left) and residuals after principal compo-
nent has been removed (Right).
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Figure 5.15: P wave component reconstructed using the first eigenvector (Left) and residuals after
secondary component has been removed (Right).
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Figure 5.16: Imaging results of reflections from KL transform (Left) and from MSTC (Right).

in Figure 5.16 (left panel). Here, the steel pad is clearly shown at an angle of 20◦ and a distance

of 3m away from the borehole. The shape of the pad can be clearly observed. In comparison, the

image created using reflections obtained by the MSTC method is also displayed in Figure 5.16

(right panel). Here the imaging result is strongly affected by the noise left over after a suboptimal

reflection signal extraction.

5.4.2 Field data example

The field data used in this thesis are acquired by an acoustic reflection imaging instrument from

East Asia. The reservoir is well-developed with fractures and vugs. The source-receiver distance

is 3.6576m and the 8 receivers are spaced at 0.1524m. With the source positions incremented at

0.1524m, the receivers record waveforms transmitted from the source with a recording sampling of

12µs. In Figure 5.17 (left panel), only data from receiver 1 of an eight-receiver array are displayed.

The single receiver data show the typical acoustic logging data set: P-direct wave with an early

arrival (about 0.8ms, P-velocity is about 4900m/s) at a high frequency; S-direct wave as a second

arrival (about 1.5-2ms, S-velocity is about 2750m/s) and Stoneley behind S- wave (at about 3 ms,
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Figure 5.17: The raw waveforms recorded by a receiver (Left); the residuals after the Stoneley
direct wave is removed (Right)

Figure 5.18: (a) Full waveforms after Stoneley signals (direct and reflected Stoneley) are mitigated;
(b) reflections extracted using KL transform; (c) the upgoing reflections by the common-receiver
gather and (d) the downgoing reflections by the common-source gather
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Figure 5.19: Up going image (Left) and down going image (Right)

P-velocity is about 1300m/s) as a low-frequency event. The reflections are submerged within the

direct waves. According to KL transform, the principal energy (Stoneley wave component) should

be removed first. Figure 5.17 (right panel) shows the residuals after the Stoneley direct wave is

removed. However, the Stoneley reflections are still present between 40m to 55m from 3ms to 8ms.

Therefore, a high pass filter based on the frequency difference between Stoneley waves (Stoneley

direct and reflected waves) and P- and S-waves is used to remove the Stoneley energy. Figure 5.18a

shows the waveforms after the Stoneley waves have been successfully removed.

The KL transform approach next suppresses the direct P- and S-waves, as is shown in Figure

5.18b. To improve the image result and remove the ghost events caused by mixed reflections, Tang

(Tang et al., 2007) used the receiver array data (common-source gather) to obtain down-going

reflection waves that illuminate the lower side of a fractured structure or a bed boundary and the

common-receiver gather to obtain the up-going reflections. In this thesis, the respective application

of this wave separation method to receiver array and transmitter array data is applied to separate
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reflection data into upgoing and downgoing waves, as shown in Figure 5.18c-d. Compared with

the reflections in Figure 5.18b, the upgoing and downgoing are effectively separated.

We next apply borehole reverse time migration, during which the upgoing- and downgoing data

are respectively migrated to the spatial domain to form updip and downdip images of formation

reflectors. Figure 5.19 shows the imaging result for both upgoing and downgoing reflections. At

depths between 20-40m, there is a bed boundary in the up image which pinches out in the down

image. The comparison between reflection data and image results indicates that quality of the

image is closely related to that of the reflection data.

5.5 Discussion

An important consideration in this approach concerns situations in which the relative amplitude of

each mode changes with the depth. To address this, we start with a model in which the formation

outside the borehole is homogeneous(each received primary mode will then be the same as the

source moves downwards). Figure 5.20a is a schematic diagram of the model. The parameters of

each formation are enumerated in Table 5.3.

Figure 5.20a illustrates the source and receiver distribution. Suppose we move the source

downward from depth of 4.20m to 9.0m with an interval of 0.15m for each shot. In Figure 5.20b

and c, the full waveforms and true reflections recorded by the receiver are plotted. Following our

KL transform procedure, the reflections are obtained after the primary waves are eliminated. This

is shown in Figure 5.20f.

Next, we consider a new model, in which formation 1 contains three-layers, with VP, VS verti-

cally increasing from the top layer of 3350m/s,1814m/s to the medium layer of 3650m/s,2064m/s,

to the bottom layer of 3850m/s,2244m/s. This model is illustrated in Figure 5.21a. The source and

receiver distribution is the same as in Figure 5.20a. In Figure 5.21b and c, the full waveforms and

true reflections recorded by the receiver are plotted. We observe that the shapes of the primaries

(between 1ms to 4ms) are no longer linear, whereas the true reflections are almost the same as in
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Figure 5.20: Sonic waveform extraction from a three-layer model, the adjacent layer outside the
borehole is homogeneous. (a) Source-receiver distribution in a three-layer model. (b) and (c) are
the full waveforms and true reflections. (d)-(f) show the procedure of reflections extraction using
KL transform

the previous example (Figure 5.20c). The reflections are again obtained after the primary waves are

eliminated. The results are plotted in Figure 5.21f. Most of the reflection energy is separated, with

some exceptions near 2ms, which is visible when compared with Figure 5.21c. Also, some noise

is introduced before 2 ms according to 5.21f. The KL transform method is, therefore, observed to

be sensitive to vertical changes in the formation parameters.

Table 5.3: Parameters of a three-layer model outside the borehole.

Vf (m/s) VP(m/s) VS(m/s) ρ(g/cm3)

Borehole 1500 - - 1.00

formation 1 - 3350 1814 2.24

formation 2 - 4550 2674 2.56

formation 3 - 5000 2800 2.70

Finally, we apply a more complex perturbation to VP and VS in the formation 1. The new VP

89



Figure 5.21: Sonic waveform extraction from a three-layer model, the adjacent formation outside
the borehole is a vertically three-layer formation. (a) shows a schematic picture of this model, the
source-receiver distribution is the same as Figure 5.20a. (b) and (c) are the full waveforms and true
reflections. (d)-(f) show the procedure of reflections extraction using KL transform

and VS exhibit a linear growth with the depth (see Figure 5.22a). In Figure 5.22b and c, the full

waveforms and true reflections recorded by the receiver are plotted. In Figure 5.22d, reflection sig-

nals separated using the KL transform procedure are illustrated. We observe strong contamination

of the result, as compared with Figure 5.22c.

For situations with strongly irregular changes of parameter distributions, the primary wave en-

ergy will also undergo irregular changes, and this nonstationarity impedes the effectiveness of the

KL transform method. If a case of this kind is encountered, we recommend a more restrictive

processing time window be used to most of the principle energy and exclude other modes. In the

mean time, a division of the processing depth range should be enforced corresponding to abrupt

changes of the lithology, ranges within which primary modes are maximally linear will reduce non-

stationarity and the associated issues. Most importantly, according to the difference between the

homogeneous model in Figure 5.20a and the laminated inhomogeneous models in Figure 5.22a, we
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Figure 5.22: Sonic waveform extraction from a three-layer model, the adjacent formation outside
the borehole is a vertically laminated formation with the VP and VS linearly increasing with the
depth. (a) shows a schematic picture of this model, the source-receiver distribution is the same as
Figure 5.20a. (b) and (c) are the Full waveforms and True reflections. (d) shows the reflections
directed extracted by KL transform, the reflections are severely contaminated by unwanted sig-
nals. (e)-(f) show the procedure of reflections extraction using KL transform with primary modes
straightened

provide a time shift for each waveform to linearize the principle wave mode according to its energy

before applying the KL transform procedure. Figure 5.22e illustrates the extracted Stoneley wave

after the Stoneley mode is linearized. Figure 5.22f illustrates the extracted reflections with a mode

linearization procedure before KL transform. Compared with 5.22d, we observe a considerable

improvement.

5.6 Conclusions

Sonic reflection logging is theoretically capable of providing a clear view of structures outside

the well site. However, reflections are usually small in amplitude relative to other observed wave

modes, and are often indiscernible. The KL transform was investigated as a means to separate
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reflections from this variety of directly propagating wave events in acoustic reflection well logging

data. Based on the simple assumption that significant energy differences characterize each signal

component, the direct P- and S waves as well as the Stoneley wave can be effectively removed, as

evidenced in synthetic testing. Comparisons with recent methods (i.e., the MSTC method) carried

out both with synthetic and laboratory data, confirm that the KL transform is capable of providing

reflection signal estimates with less noise and higher overall precision. It is particularly effective

as a tool to enhance acoustic borehole imaging results, wherein these now-separated upgoing and

downgoing acoustic reflections are further distinguished from each other based on the acoustic

array selection.

Additional, but relatively simple, processing is required for practical application to field data.

Particularly, a high pass filter should be applied at the outset to mitigate Stoneley signals(primary

Stoneley wave that follows the water wave, the Stoneley “ringing” after the primary Stoneley

wave caused by the firing of the transmitters while fully coupled to the bore hole and the Stoneley

reflections), to make up for the inability of the KL transform to isolate Stoneley signals once and

for all. With this additional step in place, field imaging results determined from the upgoing and

downgoing reflections display a number of very promising features.
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Chapter 6

Azimuth ambiguity elimination for borehole imaging using 3D

borehole RTM scheme

6.1 Introduction

Images of geological structures away from the borehole can be derived from recorded data from

borehole acoustic measurements by applying seismic imaging schemes (Hornby, 1989; Li et al.,

2002). Monopole acoustic imaging has produced positive results in delineating near borehole

structures (Fortin et al., 1991; Coates et al., 2000; Li et al., 2002). However, one of the weaknesses

of the omni-directional monopole acoustic prototype is that it only measures the acoustic pressure

and is therefore insensitive to reflector azimuth.

The azimuth ambiguity has been an issue ever since the beginning of borehole acoustic re-

flection imaging. The problem is conceptually similar to that encountered when 2D processing

and imaging methods are applied to lines of seismic reflection data over 3D geological struc-

tures. 2D methods assume all upward-propagating waveforms originate immediately below the

source/receiver line, whereas in reality out-of-plane effects can be significant.

In order to mitigate this directional ambiguity, the dipole acoustic reflection imaging was de-

veloped (Tang et al., 2003; Tang, 2004; Tang and Patterson, 2009; Bolshakov et al., 2011). In

dipole methods, dispersive flexure waves, whose velocity at the cutoff frequency equals the S-

wave velocity, are analyzed. These data, given the deviation angle of the well bore and the tool

azimuthal angle, can determine the azimuth of the structures outside the borehole after migration

(Tang et al., 2003). Tang et al. (2007) applied this technique to dipole S-wave log data. He also

developed a method to extract the shear wave reflection signals which were then used to get the

S-wave imaging.
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Li (Li et al., 2014a) applied the blind signal separation method into the synthetic horizontal

data from Sonic scanner tool to get the separated reflections from different reflectors. However,

the amplitude information is not conserved in the output of this method. Rougha (Al Rougha et al.,

2005), Yamamoto (Yamamoto et al., 2000) and Haldorsen (Haldorsen et al., 2006) developed a

3D assembly of hydrophones on the logging tool, where 4 or 8 omnidirectional hydrophones are

located azimuthally around the tool (Sonic Scanner tool developed by Schlumberger), in order

to sense azimuthal information from hydrophones towards different directions. However, 4 or 8

migrations are needed for evenly spaced hydrophone stations. (Haldorsen et al., 2010; Li et al.,

2013).

Reverse time migration (RTM) is not a new seismic prestack depth migration method. It was

first introduced in the late 1970s (Hemon, 1978) and shows promising imaging capabilities (Baysal

et al., 1983; Whitmore et al., 1983; McMechan, 1983; Loewenthal and Mufti, 1983). Because of

its high computational cost, three dimensional (3-D) prestack RTM was not yet available until

recent years (Yoon et al., 2003). In the application of borehole acoustic reflection imaging, the 2-D

borehole RTM in isotropic medium is first introduced in 2014 (Li et al., 2014b).

In this chapter, we first simulate recorded waveforms at the 8 evenly spaced hydrophones using

a staggered-grid finite difference method. Then, a borehole 3D RTM scheme is developed and

validated using the reflection signals extracted from the simulated waveforms. To compare its

performance against the standard methods discussed above, the 2-D synthetic data measured in

two horizontal wells is also simulated and migrated using a 2-D borehole RTM scheme.

6.2 Borehole reverse-time migration

RTM involves solving the two-way wave equation for both the source wave field and receiver

wave field, and is significantly more complicated than the one-way wave equation based migration

methods. As a result, RTM methods have the ability to migrate any type of multiples (surface and

internal) to their correct location in the subsurface, can handle multi-pathing, image turning waves
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and steep dips. RTM can be divided into four parts: (1) Forward simulation of the source wave

field, in which we calculate the wave field of the source propagating along the positive time axis

and save the wave field at every time step; (2) Backward extrapolation of the receiver wave field

from the maximum record time and save the wave field at every time step; (3) Application of an

imaging condition to get image results from the saved forward simulated wave field and backward

extrapolated wave field; (4) Superposition of the imaging result from every migration time step.

Though the basic steps of RTM are also valid in the borehole environment, the borehole RTM

differs from that used in seismic. First, the borehole wall itself acts as the first reflector after

the transmitter has been fired. The received reflection signals derived from energy that escaped

from the borehole are affected by the borehole wall. The forward extrapolation must include

simulation of the wave field in the borehole environment in order to take the borehole influence

into consideration. Therefore, in order to apply FDM, the elastic parameters in the vicinity of the

borehole and formation interface should be set to ensure the accuracy of the wave field propagation.

Second, the frequency used in the reflection well logging is considerably higher. Generally, the

central frequency of the field data can reach up to 10-15 kHz. The source frequency that used in

forward extrapolation should be close to that of the received signals. The closer it is to the received

signals. The better the imaging result will be (Yang, Chang and Liu 2010).

6.3 Forward and backward wavefield propagation

The forward wavefield propagation can be simulated by including a source term within the nor-

mal stress terms. For a dipole source simulation, two monopole sources with opposite phase are

positioned close to the borehole wall. Likewise, the backward wavefield simulation can also be
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obtained by a similar scheme, except equation (2.12) and equation (2.14) should be modified as,
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and,
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(6.2)

And the received reflections are treated as source signals added in the normal stress terms

during wavefield backward propagation.

6.4 Imaging condition

Standard imaging conditions are based on crosscorrelation or deconvolution of the reconstructed

wavefields (Claerbout, 1971). Most imaging conditions are designed to be applied in the acoustic

case. In acoustic RTM, therefore, wavefield reconstruction is carried out with the acoustic wave
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equation using the recorded scalar data as boundary conditions. In contrast, for elastic RTM,

reconstruction is done with the elastic wave equation, using the recorded vector data as boundary

conditions. Elastic RTM has the same logical structure as acoustic RTM: the source and receiver

wavefield reconstruction and imaging condition application. The source and receiver wavefields

are reconstructed by forward and backward propagation in time with an FD scheme.

6.5 Simulation and Comparison with 2D borehole RTM

In this section, 2D synthetic data sets are first analyzed to examine and expose some features of

the problem of azimuthal ambiguity. The velocity model used to generate the 2D synthetic data

includes a horizontal well, where a borehole horizontally locates in the middle. A corresponding

3D synthetic model with two interfaces parallel to a vertical borehole is also generated.

In Figure 6.1, a water-filled well horizontally penetrates into a fast formation (formation in red,

with its Vp and Vs being 4000 m/s, 2300 m/s, respectively). The influence of the sonic tool is also

taken into consideration in this model, where we set the Vp and Vs velocity and the density of the

tool as 5860 m/s, 3300 m/s, 7850 kg/m3, respectively. An interface with a dip angle of 15◦ on the

top of the model (formation in yellow, with its Vp and Vs. being 3000 m/s, 1800 m/s, respectively).

Let the sonic tool move from left to right at a starting poing of (x=2 m, z=6 m) and set the distance

from the source to the first receiver as 3.27 m, with two arrays (each array has 13 hydrophones

with a spacing of 0.15 m) of receivers sitting on both sides of the borehole wall. A data set of all

together 40 shots is thus generated with a total recording time of 0.01 s (recording time sample is

5e−7 s).

In Figure 6.2, reflection signals of the synthetic model recorded by upper and lower receiver

arrays are present respectively in Figure 6.2a and Figure 6.2b (the energy of reflection signal in

Figure 6.2b is multiplied by 5 times). Although the interface is on the upper layer of the model and

the borehole fluid and acoustic tool act as obstacles, preventing the reflections from the upper inter-

face being received by the lower array of the receivers, there is still considerable reflection energy
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Figure 6.1: The synthetic model of a hori-
zontal well filled with water (blue) horizon-
tally penetrates into a fast formation (red). A
dip interface locates on the top of the model.
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Figure 6.2: The reflection signals of the syn-
thetic model: (a) The reflections recorded by
the upper array of receivers; (b) the reflec-
tions from the lower array of receivers.

received by the lower receivers, which will inevitably have a negative influence on the imaging

result. As a result, only reflections from the upper receiver array are used to the next migration

step. The imaging result is shown in Figure 6.5. Because of the intrinsically azimuthal ambigu-

ity in 2D environment, the borehole RTM cannot tell which side the reflections are coming from.

The reflection energy is focused on both sides of the borehole, which produces an artifact reflector

positioned opposite to the true interface, with the measurement surface acting as a symmetry plane.

In Figure 6.3, a dipping layer with interfaces on both sides of the horizontal geometrical model

are present. The parameters of formations for the upper and middle layers are the same as those

in Figure 6.1. The Vp and Vs velocities in the lower layer are 4500m/s and 2600m/s respectively.

The borehole radiation mechanisms and receiver response (source, receiver arrays and the corre-

spondent parameters such as offset and receivers spacing) are the same as the previous model. In

Figure 6.4, reflection signals of the synthetic model are illustrate(reflections recorded by the upper

and lower array of receivers are illustrated in 6.4a and b, respectively,the energy of reflection signal

in (b) is multiplied by 5). Because of the differences in the geometry and positions of the two inter-

faces, the reflection energy received by the lower array of receivers is smaller than that received by

the upper ones. Nevertheless, by inspection of the diagram it is clear that the lower receivers can
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Figure 6.3: The synthetic model of a hori-
zontal well filled with water (blue) horizon-
tally penetrates into a fast formation (red).
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Figure 6.4: The reflection signals of the syn-
thetic model:The reflections recorded by the
upper array of receivers (a) and lower array
of receivers (b).

still receive the reflection signals from the upper interface. The imaging result is shown in Figure

6.6. The two interfaces are now distributed on both sides.

Tang (2004) successfully calculated the strike of the reflector outside the borehole using the

shear wave directional information. However, this technique is only available in the presence of

a dipole source. Wang et al. (2015) found the arrival times of reflections in different azimuth re-

ceivers of the monopole tool are different, based on which, he successfully determined the strike of

the reflector. However, in principle with the correct sensing device and sufficiently realistic phys-

ical assumptions, a more direct way of resolving azimuthal ambiguity, by applying a 3D borehole

RTM is applied to the reflections recorded by 8 omnidirectional hydrophones located azimuthally

around the tool.

In Figure 6.7, the formation between the two reflectors is a slow VTI formation whose elastic
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parameters are,

cV T I =



23.87 15.33 9.79 0 0 0

15.33 23.87 9.79 0 0 0

9.79 9.79 15.33 0 0 0

0 0 0 2.77 0 0

0 0 0 0 2.77 0

0 0 0 0 0 4.27


. (6.3)

The interface in brown is 2 m away from the well, whereas the interface in gray on the other

side is 2.5 m away from the borehole. The formation outside the two interfaces is isotropic (V p =

4000m/s, V s = 2300m/s). A dipole source with a central frequency of 2000 Hz emits energy

towards the x axis. The 8 receiver arrays are evenly spaced around the well, with 20 hydrophones

in each array. The distance between the nearest hydrophone to the dipole source is 1 m and the

hydrophone spacing of each array is 0.15 m. The total recording time is 1 ms with a time sample

of 5 µs. Figure 6.8 shows a cross-section profile of the 3D model in x-z plane. Following the work

flow proposed by Li et al. (2014b), the snapshots of the forward wavefield propagation in x-z plane

from borehole fluid to the formation outside the borehole are shown in Figure 6.9, with the time

increasing from 1.5 ms to 5.25 ms. When the wavefield propagates to the interfaces, the reflections

on both sides of the borehole are generated and thereafter propagate back from the interfaces to the

borehole. The arrival times of the reflections on both sides are different. The imaging result for one

shot of the 3D model are then shown in Figure 6.10. The two interfaces are focused in the correct

locations. The one on the left side denotes the horizontal cross section of the brown interface in

Figure 6.7. The center of the well is in position (x=80, z), with a H-PML layer of 15 grid points

outside each surface of the model, the distance between left reflector to the center of the well is 40

grids or 2 m; the reflector on the right side is 50 grids or 2.5 m away from the borehole.

To make a comparison, a monopole source is applied in the next synthetic model, where 8

receiver arrays are evenly spaced around the well, with 20 hydrophones in each array. In Figure
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Figure 6.5: Imaging result of the upper in-
terface model, shown in Figure 6.5. The up-
per structure is the real interface, however,
the lower structure is the artificial reflector
caused by azimuthal ambiguity.
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Figure 6.6: Imaging result of the model with
interfaces on both sides of the well. The
artificial reflectors caused by azimuthal am-
biguity are present both in upper and lower
parts of the well.

6.11, an interface in brown is 2 m away from the well with a strike perpendicular to x axis, whereas

the interface in gray on the other side has a strike of 45◦ from the borehole. The elastic parameters

of the formations outside the borehole are the same as those in previous model. To better illustrate

the geometrical aspects of this solution, a cross-sectional profile of the 3D model in x-z plane is

shown in Figure 6.9 shows. The distance between the nearest hydrophone to the monopole source

is 1 m and the hydrophone spacing of each array is 0.15 m. The imaging result for all together 15

shots of the 3D model is plotted in Figure 6.13. The two interfaces are also focused in the right

locations, which demonstrates the 3D borehole RTM can solve the azimuthal ambiguity even with

a monopole source.

6.6 Conclusions

Most of the methods and principles for borehole acoustic reflection imaging, to date, are funda-

mentally 2D. Within such a framework, the distance and dip angles of the structures such as vugs

and fractures outside a borehole can then be delineated by means of borehole migration and imag-

ing. However, azimuth information concerning the structures away from the borehole is not used
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Figure 6.7: The 3D profile of the VTI model
with a dipole source and 8 evenly spaced hy-
drophones.
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Figure 6.8: A cross-section profile of the
3D model in x-z plane.

in these approaches and consequently structures associated with a single azimuth appear spread

out across all azimuths.

Given tools for 3D modelling and reverse-time migration (such as those developed in this

thesis), and supported by sensing instrumentation with the intrinsic ability to distinguish the di-

rectionality of the incoming field, this issue is in principle possible to overcome. In this chapter,

this ambiguity resolution is examined using two horizontal borehole models. A 3D borehole RTM

methodology is proposed in this chapter, taking the advantage a borehole logging device design

involving 8 omnidirectional hydrophones evenly spaced around the borehole to receive reflections

from all directions. The imaging results of the 3D synthetic model show the azimuthal ambigu-

ity problem can be resolved in this way; in fact, the conclusion holds true even with a monopole

source.
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Figure 6.9: The snapshots of the forward wavefield propagation in x-z plane from borehole fluid
to the formation outside the borehole with the time increasing from 1.5 ms to 5.25 ms.
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Figure 6.10: The imaging result for one shot of the 3D model.

Figure 6.11: The 3D profile of the VTI
model with a monopole source and 8 evenly
spaced hydrophones.
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Figure 6.12: A cross-section profile of the
3D model in x-z plane.
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Figure 6.13: The imaging result for one shot of the 3D model.
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Chapter 7

Summary and Future study

7.1 Summary

In this thesis, a three-dimensional staggered-grid FDM is developed to simulate wavefield propa-

gation in both isotropic and anisotropic media. At and around borehole fluid and formation bound-

aries, the harmonic average method is applied to the elastic moduli related to shear stress tensors

during the stress components update. For suppression of the artificial boundary reflections, stan-

dard PML, C-PML and M-PML methods can be employed. A hybrid PML based on the C-PML

and M-PML is proposed in this thesis. Comparisons with the C-PML and M-PML, indicate the

new H-PML performs superior in both isotropic and anisotropic media.

The 3D elastic staggered-grid finite difference method is applied to the investigation of wave-

field simulation for a directional dipole source. In an isotropic medium, the reflections observed

at four evenly spaced receivers around the borehole show an angular dependence related to the

geometry of the reflector. Furthermore, a transition is detected between the SH-SH reflection and

SV-SV reflection with the increase of offsets. Analysis of the relationships between the borehole

wavefield reception, radiation and reflection of S-S reflected signals show that the maximum S-S

reflected amplitude occurs when the incident angle of S wave reaches its critical value (when to-

tal reflection occurs). Based on the cross-plot of maximum amplitude versus receiver offsets, the

offset of maximum amplitude can be found, and used to determine the total travel distance. Both

the distance between the borehole and the reflector and the critical angle can therefore be calcu-

lated. As a result, the shear wave velocity of the second layer outside a borehole can be obtained

according to Snell’s law.

In the VTI medium, the received waveforms recorded by the receivers is different from the

isotropic medium. The SH-SH reflection coefficient in the VTI medium is introduced and used
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to calculate the relationship between the incident angle and reflected amplitude. As a result, the

maximum value of the received SH amplitude occurs when the wave propagates to the interface

with a critical angle.

For modeling the propagation of seismic waves using FDM, different wave modes (P-, SV- and

SH- wave) are to be simulated simultaneously, which causes the crosstalk from the interference of

different modes. This crosstalk reduces the precision of imaging condition during migration and

impedes the determination of formation parameter gradients during time domain full waveform

simulation (FWI). The independent simulation of decoupled wave modes is applied to reduce this

kind of crosstalk. In Chapter 3, analysis of the SH- reflection wave indicates the SH energy is

strongest among the others. The SH- reflection can be used in the migration and imaging step to

obtain structure information such as azimuth. Furthermore, the crosstalk caused by the interfer-

ence from other modes is excepted to be reduced in further time domain full wave form inversion

(FWI). A temporal fourth-order scheme for solving the elastic SH wave equations in VTI me-

dia is proposed, which in the numerical analysis presented here suppresses the wrap-around and

Gibbs’ artifacts that have been observed in other methodologies when waves propagate through

heterogeneous formations—especially in the presence of large and abrupt changes in the medium

properties.

Before applying borehole RTM to the problem of acoustic reflection imaging logging, the

process of reflection extraction is discussed in this thesis. The KL transform was investigated as

a means to separate reflections from this variety of directly propagating wave events in acoustic

reflection well logging data. Based on the simple assumption that significant energy differences

characterize each signal component, the direct P- and S waves as well as the Stoneley wave can be

effectively removed, as evidenced in synthetic testing. Comparisons with recent methods (i.e., the

MSTC method) carried out both with synthetic and laboratory data, confirm that the KL transform

is capable of providing reflection signal estimates with less noise and higher overall precision. It

is particularly effective as a tool to enhance acoustic borehole imaging results, wherein these now-
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separated upgoing and downgoing acoustic reflections are further distinguished from each other

based on the acoustic array selection. When processing field data, a high pass filter should be

applied at the outset to mitigate Stoneley signals, to make up for the inability of the KL transform

to fully isolate Stoneley signals. With this additional step in place, field imaging results determined

from the upgoing and downgoing reflections display a number of very promising features.

As a key procedure, the determination of the confidence level is discussed by analyzing the

relationship between the confidence level and the energy distribution of signals transmitted by the

source in the borehole. Additionally, to address the change of relative amplitude of each mode

with the depth, I also tested the KL transform method by using homogeneous and heterogeneous

models, respectively. For heterogeneous media, a more restrictive processing time window is

suggested be used to most of the principle energy and exclude other modes. In the mean time,

a division of the processing depth range should be enforced corresponding to abrupt changes of

the lithology, ranges within which primary modes are maximally linear will reduce nonstationarity

and the associated issues.

Given tools for 3D modelling and reverse-time migration (such as those developed in this

thesis), and supported by sensing instrumentation with the intrinsic ability to distinguish the direc-

tionality of the incoming field, the azimuth ambiguity is in principle possible to overcome by a 3D

borehole RTM methodology. The imaging results of the 3D synthetic model show the azimuthal

ambiguity problem can be resolved in this way; in fact, the conclusion holds true even with a

monopole source.

7.2 Future study

Accurate and efficient wave field simulation in 3D isotropic and anisotropic media using dipole

source can help determine formation parameters such as P- and S- wave velocities. In this thesis,

the SH- wave velocity is determined by analyzing the SH- reflection wave. The qP- and qSV- wave

velocities can in principle also be determined by the same procedure. This is an important subject
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for future research.

Pure SH wave simulation is proposed, involving a new PSTD method. Pure qP- and qSV-

wavefield simulation can be carried out using the same method. The decoupled wavefield simu-

lation can reduce the crosstalk introduced by elastic wavefield imaging condition. This is also an

important area of ongoing and future research.

The 3D elastic wavefield forward modeling and migration can further be used in full waveform

inversion (FWI) in time domain. In the first step of FWI, the conventional method of gradient

calculation in time domain requires the computation and storage of the synthetic wavefield at

each time step to correlate with the adjoint wavefield, which has a high memory cost. On top of

this, poor input/output (I/O) of recorded data dramatically increases the total running time of the

algorithm, further decreasing computational efficiency. The random boundary condition method

that uses an increasingly random velocity region by replacing the conventional damped region is a

possible method to reduce the high memory cost and time consuming of data I/O. For anisotropic

media, a new random boundary condition based on the change of elastic constants in the damping

layer can be developed based on the finite difference tools created in this thesis. Pursuing this is

also an important area of ongoing and future research.
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