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Abstract

Short-period multiples in finely layered geological media modify a seismic pulse as it propagates.

This effect, called stratigraphic filtering, or extrinsic attenuation, is characterized by strong attenu-

ation and dispersion of seismic amplitudes. It is similar to, and in fact very difficult to distinguish

from, the effect produced by processes of seismic amplitude loss due to friction (or intrinsic atten-

uation). This is an important and difficult fact for interpreters of seismic data, because it means

that similar data signatures are produced by very different geological and petrophysical features

of the Earth. In this thesis I seek data analysis methods with the ability to amplify small differ-

ences produced by the processes of intrinsic attenuation and stratigraphic filtering, with the aim of

discriminating between the two. In a zero-offset vertical seismic profiling (VSP) data set, at any

instant in time we have access to a snapshot of the seismic wavefield along the principal direction

of wave propagation. In practice, such a snapshot has the form of discrete amplitude values being

assigned to each of a set of discrete depth values. Regarding this snapshot as a “message”, made

up of a sequence of “letters”, or amplitude values, drawn from an “alphabet” of allowable ampli-

tudes, permits the data to be analyzed using information-theoretic methods. For instance, Shannon

entropy, which measures the degree of disorder within a message, can be assigned to each snap-

shot, and the time evolution of this number can be determined directly from a VSP data set. It is

hypothesized that processes of intrinsic and extrinsic attenuation cause significant and measurable

differences in the evolution of the entropy, which means this information measure could be utilized

to help distinguish between the two. I analyze this with synthetic VSPs based on real well-log data,

pointing out the important role of amplitude bin size in this information measure and the variability

of results that should be expected as bin size changes. I point out with these examples that intrinsic

and extrinsic attenuation processes tend to have opposite influences on entropy versus time curves.

A field data set example is suggestive that the relative strength of stratigraphic filtering and intrinsic

attenuation can be estimated in this way.
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Chapter 1

INTRODUCTION

1.1 Stratigraphic filtering

1.1.1 Definition

In seismic exploration, when an incident wave traverses a layered sequence, a complex series

of interbed multiples is excited. In the case that the layered sequence is nonresolvable by the

wavelet (i.e. the wavelet length is larger than the average depth of layers), events called short-

term multiples are generated. Among them, the two-bounce, short-term multiples arouse the most

interest because they follow closely the main lobe of the first arrival and cause superposition of

their energy, which complicates seismic analysis regarding first arrival or multiples. Figure 1.1

illustrates the generation of the two-bounce short-term multiples. In the bottom panel showing

the transmitted wave, summation of the short-term multiples produces strong energy that tends to

overwhelm the first arrival energy and alter the event distribution.

It has been verified by many experiments and observations that these short-term multiples have

attenuating and dispersive effects on the transmitted wave which highly resemble those caused by

absorption O’Doherty and Anstey (1971) . They both result in a decayed and spreaded waveform

of the seismic wave, in which the high-frequency content of the initial disturbance is reduced and

an incoherent coda is appended to the signal (figure 1.2). Some researchers began calling the

amplitude attenuation and dispersion caused by the short-term multiples “stratigraphic filtering”

because they act like a low-pass filter on seismic waves (Spencer et al., 1977; Banik et al., 1985).

My research considers stratigraphic filtering as an extrinsic Q factor in contrast to intrinsic Q

(absorption) (find definition of absorption in appendix A), since its mechanism lies in subsurface

stratification instead of intrinsic rock properties.
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The mechanisms of short-term multiple attenuation and absorption are very different, however.

Summation of short-term multiples superposes an appending wave energy to the later part of the

first arrival. Also, the high frequency components of the wave are more scattered and delayed

by multiples than low frequency components because they see more detailed structures of the

media. These broaden the waveform and shift its dominant frequency to a smaller value. In

contrast, absorption broadens the first arrival waveform by transforming more energy stored in

high frequency components into heat in an irreversible manner.

Figure 1.1: A demonstration of the generation of two-bounce, short-term multiples.
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Figure 1.2: Transmitted waves from respectively an absorptive-free layering sequence and an ab-
sorptive slab when the normal incident wave is a 30Hz minimum phase wavelet. Noticing the
highly similar amplitude attenuating and dispersive effects of stratigraphic filtering and absorp-
tion.
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1.1.2 Previous work

Geophysicists’ attention to stratigraphic filtering was first drawn by the fact that discrepancy exists

between the traveltimes of events in seismic and as predicted by well logs; wave amplitudes are

frequency-dependent attenuated and dispersed in sedimentary layers, etc. (Trorey, 1962; Resnick,

1990). In fact, both absorption and stratigraphic filtering account for these effects. O’Doherty and

Anstey (1971) led the study on stratigraphic filtering: they pointed out the equivalent importance

of stratigraphic attenuation and absorptive attenuation in periodically layered media and proposed

a mathematical approach to predict the power spectrum of a transmitted wave from reflection

coefficient series. Studies to verify their point soon followed (Schoenberger and Levin, 1974,

1978; Stewart et al., 1984; Banik et al., 1985).

In the meantime, significant effort has been expended in developing methods which attempt

to distinguish between intrinsic and extrinsic Q; by utilizing the non-linear frequency-dependent

attribute of extrinsic Q against linear dependence of intrinsic Q (Spencer et al., 1977), by Q esti-

mation methods (Spencer et al., 1982; Hauge, 1981) or by investigating the amplitude and phase

spectra of the transmitted wave (Richards and Menke, 1983). In a recent work, Margrave (2017)

estimated intrinsic Q variation in a real zero-offset VSP data with spectral ratio and dominant fre-

quency methods and tried to isolate the stratigraphic Q by subtracting intrinsic Q from the total

attenuation. These works made clear how difficult a problem is the separation of the internal and

external attenuation. Besides the fact that their effects are usually coupled, it is difficult even to

get a robust estimation of their cumulative effect, since it is greatly affected by factors such as the

receiver interval, interference from upgoing events, the frequency band width and the data quality.

Distinct from the above approaches, Innanen (2012) made an argument that disorder of the me-

chanical motions involved in a seismic wave was a common feature of both intrinsic and extrinsic

Q. Treating each time trace of a VSP wave field as a sentence written in an alphabet of allow-

able discrete values of the displacement, the Shannon entropy (ie. the amount of information) of

each trace can be calculated. The argument was that this allowed a single measure of the wave
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field disorder to be defined, which transfers smoothly, as time and spatial scales decrease, from

characterization of multiples, to multiples beneath the resolution limit of the data, and to intrinsic

Q.

1.1.3 Motivation for distinguishing different Q mechanisms

One important reason why geophysicists would like to isolate intrinsic Q from extrinsic Q is that

the former is closely related to lithology and reservoir properties (permeability, gas/water satu-

ration(Qi et al., 2017) and oil viscosity), while the latter reflects more of the underground struc-

tural change. For example, for the unconventional heavy oil reservoir, many recovery methods

such as the Steam-Assisted Gravity Drainage (SAGD) involve reducing oil viscosity to let it flow

spontaneously. Which calls for a good understanding of the reservoir viscosity, to better design

production schemes and enhance recovery. While the viscosity in the boreholes is relatively easy

to measure, additional techniques are required in the region between wells. Vasheghani and Lines

(2009) showed that the viscosity of a cross-well section can be derived from the intrinsic Q by

Biot-Squirt theory (Lines et al., 2013). Therefore, estimation of intrinsic Q free from effects of

extrinsic Q is valuable for quantitative interpretation.

1.2 Statement of the problem

This research uses some of the same entropy ideas as Innanen (2012) to consider intrinsic and

extrinsic Q in VSP data sets. Due to the unique layout of VSP data, in which wave responses

are measured along the principle axis of wave propagation (i.e., the depth axis), we are able to

analyze inside layers, where short-term multiples generate and scatter, and this gives the researcher

a unique and detailed view of waves as they propagate.

My emphasis is on addressing the separability of intrinsic and extrinsic attenuation. To achieve

the goal, a research strategy is designated. That is to view a discrete VSP data set as a 2D matrix,

then calculate the Shannon entropy for each row of the matrix, corresponding to the snapshots
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(time traces) of the data set, and observe how entropy value evolves in time. I mainly answered

the following questions in the research: does the trend of the entropy variation curve and relation-

ship of entropy variation curves for different data sets contain sufficient information to separate

stratigraphic Q from intrinsic Q? If so, to what extent does the entropy curve reflect the distinction

between these types of attenuation? Are the differences qualitative only or can they be quanti-

fied? And finally, when both types of attenuation exist simultaneously in a data set, can we use its

measure entropy result as an indicator of their relative strength?

1.3 Overview of chapters

This thesis is organized as follows. The theoretical foundation is given in chapter 2, where I explain

the purpose and mathematical definition of Shannon entropy as well as the calculation strategy

to adapt this information measure to discrete seismic records. Then I illustrate the construction

of synthetic VSP models that are used to form a controlled trial aiming to observe combined

and separate effects of intrinsic and extrinsic Q on Shannon entropy. In chapter 3, two entropy

calculation algorithms are applied to synthetic VSP models from chapter 2 in time domain. The

first algorithm, also called the first-order entropy algorithm, regard data points in a data set as

independent while the second algorithm, the conditional entropy algorithm, takes correlation of

two adjacent data points into consideration. After drawing some preliminary conclusions referring

to entropy attributes, I investigate in chapter 4 the relationship between the measured entropy result

and the relative strength of intrinsic Q and extrinsic Q when they are both active. Chapter 5 then

repeats some of the experiments of chapter 3 and 4 on a field VSP data. Finally, chapter 6 includes

discussions and conclusions.

1.3.1 Data used

This study involves both synthetic VSP data experiments and real VSP data experiments.

Synthetic VSPs are modelled from well log data randomly collected from a wide range of
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working areas, to minimize the possibility that the results are specific to one area:

(a) Two wells from Blackfoot Oilfield in Alberta, Canada. Located 15km south-east of Strath-

more : 1227 and 1409 (Hoffe et al., 1998);

(b) Three wells from working area near Hussar, Alberta, Canada: 12-27-025-21, 14-27-025-21

and 14-35-025-21;

(c) Two wells from Gove and Comanche working area in Kansas, United States: Roemer-Bell

No. 1-1 and Kissel A No. 1-8.

For the real data experiments, the zero-offset record of a multicomponent walkaway VSP

dataset is extracted for use. CREWES participated in the data acquisition in 2011. The location

and the identity of the company are not disclosed by request.

1.3.2 Software used

The synthetic VSPs are modelled in Matlab R2015a using CREWES Matlab Toolbox. The zero-

offset VSP record is preprocessed in Vista 2013 provided by GEDCO/Schlumberger for free. All

other calculation is realized in Matlab R2015a and Excel.
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Chapter 2

THEORETICAL FOUNDATIONS

2.1 Shannon entropy

A promising way to investigate the short-term reverberations which are the source of extrinsic Q,

is to measure the amount of information in the wave field. The idea is that a wave field containing

complex reflecting events can be thought of as carrying a considerable amount of information,

whereas a wave field excluding a complex train of reverberations might be said to have a relatively

small amount of information. In information theory, measuring the amount of information of a

message quantitatively has long been studied and was turned into reality by CE Shannon through

“Shannon entropy” (Shannon, 2001). Thus I borrowed the concept and used it in seismology, after

applying some adjustments.

A review of how Shannon entropy is developed will help in understanding the concept. In in-

formation theory, a general communication system works as in figure 2.1. According to Shannon:

“The actual message is one selected from a set of possible messages. The system must be designed

to operate for each possible selection, not just the one which will actually be chosen since this is

unknown at the time of design.” Because of this, it is important to know about the amount of infor-

mation that the messages can possibly carry, to better design the system and reduce redundancy.

Shannon entropy serves that purpose; It measures the amount of information contained in a mes-

sage from the occurrence probabilities of elements making up the message. The less predictability

the message possesses, the more information it is said to contain, and the bigger the entropy value

would be.

Shannon entropy is calculated differently according to the degree of correlation allowed to ap-

proximate the information source. Take communication in English as an example. Any message

will consist of some or all 26 letters from the English alphabet: a, b, c,...z. In zero-order approx-
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imation of the source (English alphabet), occurrence probabilities of all letters in this message

are considered to be independent and equal, which is 1
26 here. In first-order approximation of the

source, the statistical knowledge of the source is incorporated. Such as in actual communication

we use some letters (say a,e) more frequently than others (say x,z), so the occurrence probabilities

of the former letters are set to be bigger than the latter, but are still independent. Further, there

is a second-order approximation of the source. This approximation takes correlation of two suc-

cessive elements into consideration, such as the likelihood of finding the letter “u” immediately

after the letter “q”. The occurrence probability of “u” following “q” is thus set to be bigger than

others following “q”. In this case, the occurrence probability of an element depends on what its

immediate preceding element is, so that it is no longer independent. Correspondingly, Shannon

entropies derived by using different degrees of source approximation are referred to as zero, first

and second-order entropies in my research. There are higher order approximations of the source, in

which the occurrence probability of an element depends on what its nth (n≥ 3) preceding elements

are. These will not be addressed, since I have only used up to the second-order approximation.

Figure 2.1: Schematic diagram of a general communication system ((Shannon, 2001)).
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2.2 Defining an entropy measure for seismic records

I use the mathematical definition of the first-order entropy as an example to explain how entropy

calculation in information theory can be adapted to seismic records.

2.2.1 Mathematical definition of first-order entropy

Shannon entropy was originally given in both discrete and continuous forms. The discrete form

is more suitable for our research as it is intended to be applied to discrete seismic records. For an

event X with possible outcomes {x1,x2, . . . ,xn} and their corresponding occurrence probabilities

being {P(x1),P(x2), . . . ,P(xn)}, Entropy H of event X is:

H(X) =−K
n

∑
i=1

P(xi) logb P(xi) (2.1)

where K is a positive constant that usually comes down to the choice of 1. And when we take the

logarithm base b = 2, H has corresponding unit “bit”.

The first-order entropy has the property of additivity. For independent events X and Y which

have entropies H(X) and H(Y ), the entropy of their joint event is:

H(X ,Y ) = H(X)+H(Y ). (2.2)

2.2.2 Adapting the entropy calculation for application to seismic records

Entropy is designed for events with uncertain outcomes, to apply it to seismic records, some ad-

justments have to be made. For a discrete VSP data set, assume each of its time snapshots to be

a message, and data points with amplitude ui in the snapshot can be regarded as the letters which

constitute the message (figure 2.2). The entropy to be calculated is based on the probability dis-

tribution function (PDF) that reflects the chances that at any given depth the data point will have

amplitude value ui.

If each time snapshot consists of N data points (i.e. responses from N receivers), and every

data point takes an amplitude value ui(i = 1,2, . . . ,m), which represents one of m possible am-
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plitude values, by enumerating the occurrences of a particular ui in the snapshot as W (ui), define

probability of its occurrence (Innanen, 2012) as:

P(ui) =
W (ui)

∑
m
i=1W (ui)

. (2.3)

Providing a form of the probability distribution function (PDF).

In the next step, the entropy of a single data point (can be any data point in the snapshot) is

calculated as in equation 2.1:

H ′ =−
m

∑
i=1

P(ui) log2 P(ui). (2.4)

The first-order entropy of a snapshot is then, making use of additivity in equation 2.2:

H = N ∗H ′. (2.5)

Equation 2.4 implies that both a greater range of possible amplitude values and a more even

distribution of the amplitudes’ probabilities contribute to greater entropy (figure 2.3). Overall, H

should be expected to go up when the disorder of the wave field increases.

I will be observing the entropy variation with wave traveltime in the following experiments.

If the disorder in a wave field increases/decreases in time, we should be able to see that on the

entropy variation curve. The rate at which the entropy curve rises/drops with time may be a useful

and sensitive measure of attenuating processes like absorption and stratigraphic filtering as they

gradually impact the wave field during wave propagation. If we can understand how each one

affects the wave field, and the entropy differently, it might even be possible to distinguish them.

2.3 Modelling of synthetic VSP

As time increases, and the seismic wave propagates through a set of layers and reverberates, H

should increase. Similarly, if the wave undergoes dispersion, a growing entropy value can also be

expected. What is needed in order to systematically study the influence of extrinsic and intrinsic

Q on seismic wave is a VSP modelling tool by which absorption and multiples can be turned on or

off at will.
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Figure 2.2: An example of a discrete VSP data set (left) and the amplitude distribution with depth
zoomed on to the part covered by the red line (right). The right plot shows that the data points in
the wave field are discrete.

Figure 2.3: First-order entropy value of a single data point increases when there are more possible
amplitude values (top) and their occurrence probabilities are more evenly distributed (bottom).
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This is realized using tools from CREWES’ Matlab toolbox, by which we can generate an

artificial intrinsic Q distribution from P-wave velocity and density, given well logs according to

empirical relationships (Margrave, 2014a):

Qv(z) = Q0
v(z)− v1

v0− v1
+Q1

v(z)− v0

v1− v0
(2.6)

and

Qρ(z) = Q0
ρ(z)−ρ1

ρ0−ρ1
+Q1

ρ(z)−ρ0

ρ1−ρ0
. (2.7)

These equations match Q0 with v0 and ρ0, Q1 with v1 and ρ1, then derive the Q distribution in

the whole depth range based on these two points. The values v0, ρ0, v1 and ρ1 are all available from

standard well logs. The final Q model is derived according to the following equation to combine

the estimations.
1

Q(z)
=

1
2

(
1

Qv(z)
+

1
Qρ(z)

)
. (2.8)

Once a defensible Q model is determined, synthetic VSPs are modelled by a propagator matrix

method (Margrave and Daley, 2014b). The reason the propagator matrix approach is chosen is

that with it one can conveniently turn on and off internal multiples, surface multiples, transmission

loss and absorption in the finalized VSP data set. This way, the influence of these elements on the

entropy, alone or together, can be studied.
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Chapter 3

TIME DOMAIN INFORMATION MEASURES

3.1 Chapter overview

The time domain information measure consists of two parts, one involving a first-order entropy

algorithm to compute the first-order entropy of the VSP data and also a conditional entropy algo-

rithm to compute the second-order entropy of the VSP data. The first-order entropy study uses

the measure of entropy described in last chapter, which is not sensitive to correlations between

nearby wave field values. After that, a conditional entropy algorithm utilizing conditional am-

plitude probabilities is constructed, allowing correlations between two adjacent data points to be

included.

In the calculation process there are some points to emphasize:

(1) Both the seismic data and the entropy calculation are discrete, which means we have to define

and use amplitude bins to classify data points. A proper choice of amplitude binning is crucial,

to ensure that diverse subsurface events (direct arrival, primaries, internal multiples, etc.) can

be distinguished and will have the appropriate effect on the computed entropy;

(2) A range for possible amplitude values needs to be determined for amplitude PDF calculation.

3.2 Data set

Well log data randomly collected from a wide range of working areas were used in the experiment,

to minimize the possibility that the results are particular to one area:

(a) Two well logs from Blackfoot Oilfield in Alberta, Canada. Located 15km south-east of

Strathmore (figure 3.1): 1227 and 1409 (Hoffe et al., 1998);
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(b) Three well logs from working area near Hussar, Alberta, Canada (figure 3.2): 12-27-025-21,

14-27-025-21 and 14-35-025-21;

(c) Two well logs from Gove and Comanche working area in Kansas, United States: Roemer-

Bell No. 1-1 and Kissel A No. 1-8 (figure 3.3).

Figure 3.1: Location of the Blackfoot Oilfield.

3.3 The first-order entropy algorithm

3.3.1 Calculation strategy

For both algorithms, a controlled trial of entropy calculation was carried out, composed of four

distinct synthetic zero-offset VSP data sets built from well logs described above. The VSP data

sets contain respectively: a) primaries; b) primaries with internal multiples; c) primaries with

absorption and d) primaries with both absorption and internal multiples. Which represent, corre-

spondingly, earth models of the following type: a) a non-absorptive slab; b) a non-absorptive finely

layered sequence c) an absorptive slab and d) an absorptive finely layered sequence. Note that the

surface-related multiples are not modelled in any of the data sets as they will scatter the wave am-

plitudes and increase the disorder in the wave field in the similar way as internal multiples, which

makes them an interference for our research.
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Figure 3.2: Location of Hussar wells.

Figure 3.3: Location of Kansas well Roemer-Bell No. 1-1 randomly and well Kissel A No. 1-8.
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The complete time domain information measure is conducted in the following steps:

(1) Create a “fake Q” model from the well log;

(2) Generate four synthetic VSP data sets for the controlled trial using the propagator matrix

method;

(3) Choose a proper amplitude bin size according to source wavelet and the seismic record;

(4) Calculate an amplitude PDF for every time snapshot of all VSP data sets;

(5) Calculate entropy for every time snapshot of all VSP data sets using the amplitude PDFs.

3.3.2 Choice of bin size

A proper choice of amplitude bin size is crucial for the entropy calculation because it determines

how distinct the event classification will be, and this impacts the final entropy behavior. It needs

to be sensitive enough to the energy scale difference between direct arrival and primaries, between

primaries and multiples and between noise and weak signals, so that their impact on entropy curves

can be properly distinguished.

Taking well 1227 from Blackfoot oilfield as an example, figure 3.4 presents its forward mod-

elling result of step (2), and figure 3.5 shows the minimum phase source wavelet with main fre-

quency 30hz used throughout the modelling process. It was observed that the source wavelet has

a maximum absolute amplitude of approximately 0.13 and data points in the figure 3.1 wave fields

have absolute amplitudes ranging from 0 to 0.1. Thus I empirically decided that the amplitude bin

size be smaller than 0.1 to guarantee a good resolution. As a result, three bin sizes 0.01, 0.001 and

0.0001 were chosen and tested.

It can be difficult to determine which choice of bin size is more appropriate by simply observing

the amplitude values in the wave field. Instead, I devised a criterion: the proper bin size should

be able to distinguish the upgoing events in the presence of the much stronger downgoing events’

energy. Downgoing waves in real VSP seismic records have much stronger energy than upgoing
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events because of the cumulative effects of wave attenuation like geometrical spreading, absorption

and transmission loss with increasing propagating time; so the upgoing energy in a VSP record is

usually overwhelmed by the downgoing energy. Yet for our study of stratigraphic filtering, upgoing

energy is too important to be neglected, as it contains information about all kinds of reflections.

Therefore, the amplitude bin chosen should be able to distinguish upgoing events to ensure they

will affect entropy properly.

The next question is how to decide whether the upgoing events are, in fact, detected? In the

forward modelling process, we lose some of the downgoing events by turning off the surface

multiples. Accordingly, I found, in all modelled VSP data sets, there are more upgoing events than

downgoing events (among those which have no more than three bounces. Events that have more

than three bounces are considered to have negligible energy.) (see appendix B). From information

theory perspective, this means the upgoing wave field is more disorderly than the downgoing wave

field regardless of their energy levels. So that the former is expected to contribute to a slightly

larger entropy value than the latter when determining proper bin sizes.

Figure 3.6 displays the entropy evolution with time for up and downgoing wave fields asso-

ciated with the figure 3.4 data sets. Each subplot is composed of four panels, corresponding to

four VSP data sets. The bin sizes used to derive (a), (b) and (c) are respectively 0.01, 0.001 and

0.0001. In subplot (a), entropy of the downgoing wave field exceeds entropy of the upgoing wave

field when neither absorption nor internal multiples exist (upper left panel), which indicates that

bin size 0.01 is unsuitable. In subplot (c), entropy of downgoing wave field exceeds entropy of

upgoing wave field so greatly that we can hardly distinguish between the four panels that reflect

diverse subsurface features. It is likely that the calculation errors (eg. when all signals have passed,

the data sets are not filled by exact 0s but numbers that are very close to 0) are misinterpreted as

signals by the amplitude bin with size 0.0001. Subplot (b), on the other hand, gives the relatively

satisfactory result that upgoing and downgoing wave fields’ entropies are comparable, and they

possess enough sensitivity to the different subsurface features between four panels. Based on the
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tests, therefore, bin size 0.001 appears to be the most appropriate choice for the research.

3.3.3 Blackfoot well 1227 results

I found that the trends and relative relationships of entropy variation curves of all the tested wells

are similar, suggesting that the information measure is robust. Consequently, the general features

of the results can be outlined by focusing on a particular well. To exemplify the results I consider

the Blackfoot well 1227. Table 1 contains some key parameters that are used in the experiment.

A “fake Q” distribution is created for Blackfoot 1227 and is plotted in figure 3.7. The four VSP

data sets for the controlled trial are then modelled and shown in figure 3.4. Based on equation 2.3,

PDFs representing the probability of a particular amplitude value’s occurrence in a snapshot of the

VSP wave fields are derived and shown in figure 3.8. Then, using equation 2.4 and 2.5, entropy H

for each snapshot of the wave fields is calculated. Finally, the entropy variation with time results

of all wave fields are shown in figure 3.9.

Table 3.1: Key parameters used in modelling synthetic VSP data
Q Geophone Amplitude

bin size
Minimum Q Maximun Q Interval (m) Depth Dominant f Maximum

Range (m) of wavelet (Hz) traveltime (s)
20 220 0.5 0-1300 30 2.0 0.001

The amplitude PDFs in figure 3.8 allow some qualitative interpretations to be made. Each row

in the subplot stands for the amplitude PDF computed at a certain time snapshot; scanning the

plots vertically permits us to discuss the variation of PDF with time in the wave field. According

to the definition of the amplitude PDF, the more spread the PDFs in a subplot are, vertically or

horizontally, the more severely the amplitude is scattered in the corresponding wave field.

The most noticeable fact is that, after a certain time, all PDFs become completely centralized.

This represents a baseline, or zero state, after all signal information has passed; noise and artifacts

fill one bin of the histograms here.

Comparison among subplots (a), (b), (c) and (d) allows some preliminary conclusions to be
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Figure 3.4: Synthetic VSP data sets modelled from well Blackfoot 1227 representing the following
subsurface features: a) a non-absorptive slab; b) a non-absorptive finely layered sequence c) an
absorptive slab and d) an absorptive finely layered sequence.
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Figure 3.5: The minimum phase 30hz source wavelet used for forward modelling.
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Figure 3.6: The entropy variations with time for up and downgoing wave fields in figure 3.4 data
sets using respectively amplitude bin size (a) 0.01 (b) 0.001 (c) 0.0001.
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Figure 3.7: Empirically simulated Q distribution, sonic (P-velocity) log and density log of well
Blackfoot 1227.
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Figure 3.8: The independent amplitude PDFs derived respectively from synthetic VSP data sets in
figure 3.4.
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Figure 3.9: The first-order entropy variation result of synthetic VSP data sets in figure 3.4.

drawn:

(1) Comparing (b) to (a), existence of internal multiples extends the amplitude scattering vertically

to later arrival times and horizontally to wider range, such that the disorder in the wave field is

increased overall;

(2) Comparing (c) to (a), absorption impacts amplitude scattering in exactly the opposite way: the

scattering effect shrinks horizontally to a smaller range and vertically to earlier arrival times,

which represents a decrease of the disorder in the wave field;

(3) Lastly, with internal multiples and absorption acting simultaneously in case (d), amplitude

scattering lies in a status between that of (b) and (c) where internal multiples and absorption

act separately: it extends vertically to a later arrival time than (c) while the amplitude scattering

range shrinks horizontally to a smaller value than (b).

It appears that the effects of internal multiples and absorption on the amplitude PDFs counteract
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each other. Why this happens needs further investigation, but it at least suggests that the informa-

tion measure may be sensitive enough to distinguish between the two attenuation mechanisms.

This leads us to analysis of figure 3.9.

In figure 3.9, for all situations, entropy increases with time at starting portion, reflecting the

growing disorder with time of the wave fields. However, the increase is different for each of the

four cases. Derived from cases excluding internal multiples, the yellow and blue curves have

smaller peak entropy values than red and purple ones. They peak at between 0.2s and 0.3s, which

can be regarded as a direct response to the primaries generated from a cyclic layered region, in

other words, a region where velocity and density change rapidly between large and small values

over a small depth interval: 200m-300m (see figure 3.7). On the other hand, cases including

internal multiples (purple and red curves) contribute to larger peak entropy values at a later time

around 0.4s. From the delayed peak time I infer that the first-order multiples from the same cyclic

layered region are making the greatest contribution to the rise of entropy. Furthermore, entropies

calculated from cases containing absorption exhibit smaller peaks than those which do not, as seen

by comparing purple and yellow curves to the red and blue ones respectively. Overall, the most

disordered PDFs (figure 3.8 (b)) contribute to the largest entropy (red curve) and vice versa (yellow

curve).

No analysis for the decreasing portions of the entropy curves has been made, since I was able

to prove that the decrease is more of an artifact of the discrete entropy algorithm. Intuitively,

one would expect that the entropy of an isolated wave field remains constant or increases, never

decreases. Why entropy decreases after a certain point in time is explained as follows. In figure

3.10, subplots in the left column imitate the possible amplitude distribution of a VSP snapshot.

In the case that the original amplitudes are attenuated by 90% (from (a) to (b)) while the bin size

stays fixed as 1, there will be an observable change in the corresponding PDF. When data points

assume smaller values, amplitudes are more coarsely sampled by the constant bin size, leading to

a narrower, steeper PDF, and hence to a smaller entropy value. In other words, entropy decrease is
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a consequence of data amplitude range diminishing relative to bin size, not of the decrease in wave

field disorder.

During wave propagation, internal multiples scatter waves and distribute wave energy into

smaller packets (eg. incident wave generates reflected wave and transmitted wave at an interface,

both of which have smaller amplitudes than the incident wave), and absorption transforms wave

energy into heat. Both mechanisms gradually attenuate the amplitudes and make our measure of

entropy decrease after a certain time. Nevertheless, internal multiples boost the amplitude scatter-

ing in the field while absorption does the opposite (figure 3.8), so they have different effects on

entropy.

Figure 3.10: Simulation of amplitude distribution in a VSP time snapshot before (a) and after (b)
attenuation and their corresponding amplitude PDFs.

3.3.4 Seven-well comparison

The first-order entropy variation results for seven wells are calculated and shown in figure 3.11,

followed by table 3.2 listing the peak values of all curves for the convenience of comparison. Dis-
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crepancies exist among results of different wells due to the diverse geological condition surround-

ing the well positions, nevertheless all curves share some common features: all entropies increase

with wave propagation in early time range 0-0.5s. Also, the peak values of four entropy curves for

any well are ranked from high to low as: case (b), the one involves solely internal multiples; cases

(d) or (a), those involve both internal multiples and absorption or involve neither internal multiples

nor absorption, and, case (c) which involves solely absorption. The first-order entropy algorithm

seems to be robust across at least three randomly selected analysis areas, and the the analysis is

similar for every well.

Table 3.2: Peak values of the first-order entropy variation results
A B C D

Roemer Bell No. 1-1 8802.2 14532
:::::::
7855.4 12903

Kissel A No. 1-8 11199 13837
:::::::
9881.3 12128

Blackfoot 1227 8170 12297
:::::::
7079.3 10528

Blackfoot 1409 13138 13816
::::::
11177 11926

Hussar 12-27-25-21 8170.3 12297
:::::
7114 10656

Hussar 14-27-25-21 7809.5 12270
:::::::
6778.5 10546

Hussar 14-35-25-21 7648.2 11933
:::::::
6475.2 10413

1 Straight line marks the maximum among horizontal four values,
wave line marks the minimum

3.4 The conditional entropy algorithm

Analysis regarding the first-order entropy algorithm suggests that a sensitive information theory

based analysis could uncover distinctions between intrinsic and extrinsic attenuation. However,

the first-order approximation of the wave field data does not take correlations between nearby data

points into account, and it is plausible that involving these correlations will help emphasize differ-

ences between extrinsic and intrinsic Q. Empirically we know that for a bandlimited, continuous

seismic waveform, if at one time amplitude has a particular value, amplitude at its neighboring

time is not arbitrary, but is likely to fall near this value. In this part I will demonstrate the usage of

this correlation in analyzing seismic data.
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Figure 3.11: The first-order entropy variation results of synthetic VSP data sets built separately
from seven wells representing the following subsurface features: a) a non-absorptive slab; b) a
non-absorptive finely layered sequence c) an absorptive slab and d) an absorptive finely layered
sequence.
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I used a second-order approximation of the wave field and from that developed a conditional

entropy algorithm, in which the probability of selecting a value at one data point is considered to

be determined by the value of its immediately preceding data point in time. Entropy derived this

way is called second-order entropy. The conditional algorithm was applied to all wells. In the

following section, I still use well Blackfoot 1227 as a representative.

3.4.1 Calculation strategy

To determine the correlation of amplitude values, I chose a particular value as prerequisite and

computed the occurrence frequencies of all possible values at its succeeding time position in a

whole data set range. The occurrence probabilities derived this way is called conditional proba-

bilities in statistics. The conditional PDFs computed for VSP data sets in figure 3.4 is displayed

in figure 3.12. Probabilities for all data sets distribute along diagonals, indicating all subsequent

amplitude values correlate strongly with their preceding values, which one might intuitively expect.

If the independent PDF of an event X is P(xi) (i = 1,2, . . . ,n1), and the conditional PDF of

event Y happening right after it is P(y j|xi) ( j = 1,2, . . .n2), the second-order entropy is computed

by (Shannon, 2001):

H(Y |X) = ∑
xi

P(xi)H(Y |X = xi) =−∑
xi

P(xi)∑
yi

P(yi|xi) logP(yi|xi). (3.1)

H(Y |X = xi) represents the conditional entropy of Y with prerequisite X having a certain outcome

xi. In this experiment, X stands for the starting amplitude U0, and Y stands for its succeeding

amplitude Ui in figure 3.12. With the conditional entropy H(Y |X) of Y and the first-order entropy

H(X) of X , entropy of the joint event of X and Y can be derived by:

H(X ,Y ) = H(Y |X)+H(X). (3.2)

The research strategy was still investigating how entropy evolves in time, which requires that

an entropy value be computed for every time snapshot. To incorporate the amplitude correlations

displayed in figure 3.12, I determined the first-order entropy for the first point in the snapshot
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H1 according to equation 2.4, using the independent amplitude PDFs in figure 3.8. Then, with

equation 3.1, the independent PDFs of the leading point and conditional PDFs of the following

point were combined to give entropy of the second point in condition of the first point taking

particular amplitudes, being referred to as H2|1. Summation of H1 and H2|1 gave H1,2— entropy

of the first two points taking particular amplitudes simultaneously. Following this idea, entropy of

the whole snapshot was suppose to be H1,2,...,N = H1+H2|1+H3|1,2+ . . .+HN|1,2,...,N−1. However,

first, H1,2,...,N is not second-order but Nth-order, which is not in accordance with my intention of

using second-order source approximation; second, calculating the Nth-order probabilities when

N is big can hardly be achieved in Matlab because it requires a tremendous amount of time and

storage. Thus, I made a compromise and assumed H3|1,2,H4|1,2,3, . . . ,HN|1,2,...,N−1 to be all equal

to H2|1, which made the entropy of a snapshot

H = H1 +(N−1)H2|1. (3.3)

3.4.2 Blackfoot well 1227 results

The following observations are made regarding figure 3.13, in contrast to the results of the first-

order entropy algorithm (figure 3.9):

(1) The magnitude: the magnitude of the entropy values is greatly reduced due to the use of

conditional probabilities by which highly impossible amplitudes values are eliminated;

(2) The trend: Focusing on time range 0-0.5s where events are better resolved by the amplitude

bin, the entropy curve is dominated by a steep decline, after an initial brief rise;

(3) The interrelation: peaks of entropy curves for cases including internal multiples (red and purple

curves) lie generally beneath those for cases excluding internal multiples (yellow and blue

curves), and the involvement of absorption in wave fields contributes to entropy curves with

relatively larger peak values (yellow and purple curves in contrast to the blue and red ones

respectively).
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Figure 3.12: Conditional PDFs of amplitude U1 in condition of its leading points in time having
amplitude U0 from synthetic VSP data sets of figure 3.4 (several points around zero are muted).
The white squares direct attention to regions with apparent distinguishing features.
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Some of the above observations are unexpected because they contradict some conclusions that

were drawn in the first-order entropy algorithm. One confirmation is that the involvement of data

point correlations has complicated the problem. The final analysis should await the results from

other six wells, however.

Figure 3.13: The second-order entropy variation result of synthetic VSP data sets in figure 3.4.

3.4.3 Seven-well comparison

Figure 3.14 shows the comparison of conditional entropy measures of all wells. Table 3.3 lists

the peak values of all entropy curves. On one hand, figure 3.14 appears to show some common

features among different entropy curves, such as that they all have small magnitudes and similar

trends—they generally decline after a short-period rise. On the other hand, numbers in the table

reveal that results from other six wells do not share all the characteristics of Blackfoot 1227 entropy

curves. The peak values are irregularly ordered from high to low, which obscures the manner in
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which intrinsic and extrinsic Q affect entropy in the new algorithm.

Nevertheless, when zooming on the rising portion of entropy curves which lies in time range

0-0.15s (figure 3.15), entropy curves for all wells show consistency in their correlations: entropy of

case (c) including only absorption has the largest value, followed by entropy of case (d), including

both absorption and internal multiples, and entropy of case (a) including neither absorption nor

internal multiples; case (b) which includes only internal multiples has the smallest entropy value.

An explanation for the above behavior can be given intuitively. Each seismic event in the wave

field represents an amplitude sequence. Since we are reducing the uncertainty of the amplitude

values by making use of the natural extent of the waveform in the conditional entropy algorithm,

more events in the field will increasingly constrain subsequent points in these sequences. The

effect of this is to narrow the amplitude PDF, which leads to a smaller entropy. Internal multiples,

as an exterior factor, increases the number of events in the wave field while absorption does the

opposite by attenuating amplitudes and making seismic events lose relative to the amplitude bin,

then being undistinguishable. Proof can be found in the tighter PDF in squared region of figure

3.12 (b) than (c).

Table 3.3: Peak values of conditional entropy variation results
A B C D

Roemer Bell No. 1-1 13.7
:::
8.6 13.25 12.3

Kissel A No. 1-8 14.86 15.03 14.95
::::::
14.24

Blackfoot 1227 13.12
::::::
10.26 13.54 12.23

Blackfoot 1409 15.54 14.32 13.05
::::::
12.39

Hussar 12-27-25-21 13.12
::::::
10.26 13.53 12.17

Hussar 14-27-25-21 13.75 15.1 13.83
::::::
12.65

Hussar 14-35-25-21 13.82 15.52 13.79
::::::
12.76

3.5 Chapter summary

Two time-domain entropy algorithms yield very different results, but analysis suggests they can

both be reasonable, depending upon the point of view. One measure of entropy is positively related
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Figure 3.14: The second-order entropy variation result of synthetic VSP data sets built separately
from seven wells representing the following subsurface features: a) a non-absorptive slab; b) a
non-absorptive finely layered sequence c) an absorptive slab and d) an absorptive finely layered
sequence.
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Figure 3.15: Results for different wells in figure 3.14 zooming on early times. (1) Roemer Bell
No.1-1; (2) Kissel A No.1-8; (3) Blackfoot 1227; (4) Blackfoot 1409; (5) Hussar 12-27-25-21; (6)
Hussar 14-27-25-21; (7) Hussar 14-35-25-21. 36



to the change of disorder in the wave field as waves propagate, the other is bounded by data points’

increasing correlations as a consequence of an increasing number of events. It is encouraging to

see that, no matter in which algorithm, intrinsic Q and extrinsic Q always influence entropy in the

opposite sense. Although the entropy behaviour depends closely on the amplitude bin resolution,

it does not mean we can not make use of this attribute to let it assist in distinguishing the different

attenuation mechanisms.

From the perspective of using information measure to recognize and separate intrinsic and

extrinsic Q in the wave field, the first-order entropy algorithm is preferable to the conditional

entropy algorithm. While both of them are sensitive to the distinction between different Q, the

former presents it in a more straightforward manner. There is also promise in using the information

measure to evaluate the relative strength of stratigraphic Q and absorptive Q in a scenario when

their effects on the seismic wave are inseparable. This can be possibly achieved by comparing the

entropy curve of case (d)—wave field includes both absorption and internal multiples, with the

entropy curve of case (a)—wave field includes neither absorption nor internal multiples.
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Chapter 4

THE INFORMATION MEASURE WHEN BOTH INTRINSIC

AND EXTRINSIC Q ARE ACTIVE

4.1 Chapter overview

It is shown in last chapter that the time domain entropy responds differently in the presence of

intrinsic Q and extrinsic Q in the wave field, which suggests that the information measure may be

used to distinguish them. I conjectured that comparing the entropy variation curves of two cases

in the controlled trial: case (a) and case (d), will reveal information regarding the relative strength

of two attenuation mechanisms when they act simultaneously on seismic waves.

This chapter demonstrates how I attempted to verify the conjecture. A new experiment was

designed utilizing synthetic data and entropy results from all seven wells. The previous chapter

focused mostly on entropy analysis of wave fields generated by either an absorptive slab (case (c))

or a non-absorptive finely layered sequence (case (b)). This chapter, however, pays attention to the

entropy measured from wave field of an absorptive finely layered sequence (case (d)), because it is

the case in which both stratigraphic filtering and absorption contribute to the overall amplitude at-

tenuation and dispersion. For each well, I computed how the measured first-order entropy changed

from wave field (a) to wave field (d), and compared the change with the strength of intrinsic Q and

extrinsic Q in wave field (d) estimated by the spectral ratio method, to see if the change responses

to the different relative strength of intrinsic and extrinsic Q regularly. Analysis in previous chapter

suggests that, for the first-order entropy, the inclusion of extrinsic Q in the wave field tends to

increase the entropy peak value, whereas the inclusion of intrinsic Q in the wave field is likely to

reduce the entropy peak value.

As many wells as possible (in our case, all seven wells) are included in the experiment to ensure

38



that the result reflects the character of the information measure rather than the data. The collection

of seven wells is by no means large but it can at least give us an overall idea of how the interrelation

of entropy peaks of case (d) and (a) is related to different Q strength.

4.2 Spectral ratio method

4.2.1 Theoretical review

A variety of methods exist in time and frequency domain aiming at estimating Q in the wave field,

such as the spectral ratio (Bath, 1974), wavelet modelling (Jannsen et al., 1985) and dominant

frequency (Margrave, 2017). I applied the spectral ratio, the widely used and one of the most

reliable methods of Q determination, to my experiment to measure the attenuation in wave field

(d) built from the wells.

The method works as follows. In a VSP data set, let Ax( f ) be the amplitude spectrum of a

downhole pulse recorded at depth x and A0( f ) be the amplitude spectrum of the reference downhole

pulse recorded at depth x0; the relationship between the two amplitude spectra is:

Ax( f ) = GxA0( f )e−Bx f . (4.1)

The equation describes the process of the pulse being attenuated in amplitude when it propa-

gates from depth x0 to depth x (generally x > x0). Gx and Bx are both independent of frequency, but

they represent different aspects of the total attenuating effects. Gx represents attenuating factors

such as geometrical spreading, transmission loss, change of geophone settings, etc.. And Bx pro-

duces the attenuation effect which is positively related to frequency. Attenuation associated with

Bx includes absorption and stratigraphic filtering.

Bx is usually referred to as the cumulative attenuation (CA) from depth x0 to x. To reflect the

average attenuation level in this depth range, define an interval attenuation kx as:

kx =
Bx

x− x0
, (4.2)
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and it is generalized to

kx =
∆B
∆x

(4.3)

in case of inconsistent Q distribution with depth.

In equation 4.3, kx represents the attenuation at depth x, however it is not the attenuation related

to quality factor Q in a conventional sense. Recalling the expression of “constant Q theory” (Aki

and Richards, 1980):

Ax( f ) = A0( f )e−
π f ∆t

Q . (4.4)

Drawing an analogy between equation 4.4 and 4.1, it is found that:

Bx =
π∆t
Q
⇒ Bx

∆t
=

π

Q
= αx, (4.5)

also

kx =
∆B
∆x

=
∆B

∆tvx
=

αx

vx
. (4.6)

αx is related to Q, and it has unit nepers/wavelength. To calculate αx, we need to know Bx. If

we take the logarithm on both sides of equation 4.1 and reorganize, it is transformed to:

log
Ax( f )
A0( f )

=−Bx f + logGx. (4.7)

We see in equation 4.7 that Bx is the negative of the slope of a linear function of spectral ratio in

frequency, and αx can then be derived according to equation 4.5 or 4.6. In practice, the reference

amplitude spectrum A0 is usually chosen at early traveltime where attenuation has not taken place,

so that αx at any depth x in reference to this A0 will be the true attenuation value in situ, rather then

a relative quantity.

4.2.2 Q determination in seven wells

When applying the spectral ratio method to the wave field, there are aspects which must be ad-

dressed in order to ensure a reliable outcome:
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(1) The spectral ratio method has resolution limit no smaller than several hundred feet due to the

inconsistency of source wavelet and interference from upgoing waves (Hauge, 1981). Thus in

this experiment, Bx is linearly fitted over a large depth interval (>50m) to get Q information;

(2) It is advisable not to use information over the entire frequency range when extracting Bx from

the linear function of spectral ratio versus frequency. Empirically, both the low and high fre-

quency portions of the amplitude spectrum are dominated by noise, rather than signal. Because

of that, Bx should be extracted from a limited frequency range which lies around the dominant

frequency of seismic waves. By checking the amplitude spectrum of traces in the wave fields,

I decided that the trustworthy frequency range for all wells is 10-100Hz.

With these aspects taken into account, I applied the spectral ratio method to two kinds of wave

field built from seven wells: one has identical subsurface features as case (d) in figure 3.4—an

absorptive finely layered sequence; the other, as a reference, share subsurface features of case (c)

in figure 3.4—an absorptive slab. In this case, they were built using quality factor Q = 70 for

all depths instead of Q = 20− 200 as was used in building the figure 3.4 wave fields to simplify

the Q estimation. I will still refer to them as case/wave field (d) and case/wave field (c) in this

experiment.

The Q estimated from case (c) (intrinsic Q) contains only intrinsic Q and that estimated from

case (d) (apparent Q) contains both intrinsic and extrinsic Q. Considering that wave field (d) is

identical to wave field (c) in every other aspects except the additional inclusion of internal multi-

ples, I took the Q estimated from (c) as the intrinsic Q in (d). Intrinsic Q and apparent Q have the

relationship (Spencer et al., 1982):

1
Qapparent

=
1

Qintrinsic
+

1
Qextrinsic

. (4.8)

From equation 4.8, the extrinsic Q strength and its percentage in total Q of case (d) can be derived.

Figure 4.1 is presenting the apparent Q and intrinsic Q distribution estimated from wave fields of

well Blackfoot 1227 as an example. Estimated Q information of all wells is listed in table 4.1 and

4.2.
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Figure 4.1: Intrinsic and apparent Q distributions with depth of case (c) and case (d) in figure 3.4
computed by spectral ratio method.
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Seen in figure 4.1 and table 4.1, the measured intrinsic Q for well Blackfoot 1227 is 68.6, very

close to Q = 70 that was used when generating synthetic data sets. And the measured apparent Q

deviates from its mean value at different depths. These features of measured Q values are shared

by other six wells so their Q distributions are not presented. Since I intend only to get a general

idea of the relative strength of intrinsic and extrinsic Q in the well positions, also, the entropy value

measured from a time snapshot includes a mix of Q effects of all depths, the Q distribution over

small depth interval is not needed. Therefore, mean values of Q are adopted for the experiment.

Table 4.1: Q information in seven wells’ positions (I)
Roemer Bell Kissel A Blackfoot Blackfoot

No. 1-1 No. 1-8 1227 1409
Intrinsic Q 68.6 68.6 68.7 68.5
Apparent Q 29.2 54.2 47.9 35.8

Percentage of extrinsic Q in total Q (%) 57 21 30 48

Table 4.2: Q information in seven wells’ positions (II)
Hussar Hussar Hussar

12-27-25-21 14-27-25-21 14-35-25-21
Intrinsic Q 68.6 68.6 68.7
Apparent Q 47.9 34.1 42.0

Percentage of extrinsic Q in total Q (%) 30 50 39

4.3 Relating the entropy behavior to the strength of extrinsic Q

The last row of table 4.1 and 4.2 lists how much of the total Q is contributed by the extrinsic Q. To

find out the connection between entropy behavior and attenuation strength, I compared the extrinsic

Q strength with the entropy peak increase from case (a) to (d) for different wells. A positive entropy

peak increase indicates that wave field (d) contributes to a larger entropy peak value than (a) and

negative number indicates a smaller entropy peak value of wave field (d) than (a). Also, the larger

the number, the more the entropy peak increases from (a) to (d). I only investigated the first-order

entropy in this experiment, so every “entropy peak increase” mentioned in the following content
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means the peak increase of the first-order entropy. The comparison between entropy peak increase

and extrinsic Q strength in total Q of seven wells is displayed in figure 4.2.

Figure 4.2: Comparison between extrinsic Q strength relative to total Q and the entropy peak
increase from case (a) to case (d) of seven wells.

Basing on existing knowledge of time domain first-order entropy, I speculate that the stronger

the strength of extrinsic Q in total Q is, the larger the entropy peak increase will be. This spec-

ulation is somehow supported by figure 4.2. Roemer Bell No. 1-1, the one having the strongest

extrinsic Q of all wells, also has the largest entropy peak increase of all; in contrast, Kissel A

No. 1-8 appears to have the weakest extrinsic Q and the smallest entropy peak increase. A simi-

lar positive relationship of extrinsic Q strength and the entropy peak increase is observed on well

Blackfoot 1227 and three wells from Hussar working area as well. Despite that these six wells

show good similarity, it is hard not to notice the abnormal behavior of well Blackfoot 1409. It has

the third strongest extrinsic Q but the smallest entropy peak increase (actually negative).

The abnormality of Blackfoot 1409 may be due to a poorly estimated extrinsic Q strength or
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an undiscovered character of entropy. To find the answer, I reviewed and compared log data for

the seven wells. Figure 4.3 displays the P-wave velocity and density logs of all wells, zooming on

the depth region 400-600m. Obvious peculiarity was found in (4)—log data of Blackfoot 1409.

First, they seem to have a narrower frequency band than log data of other six wells. Figure 4.4

verifies it. We see that wave field (c) for Blackfoot 1409 has a narrower frequency band than that

of Blackfoot 1227, with the partial loss of both high and low frequency components. This would

almost certainly have affected the outcome of spectral ratio method, since there will be fewer points

corresponding to signal when linearly fitting the spectral ratio to frequency using equation 4.7.

Second, the velocity and density distributions of Blackfoot 1409 show little detail in small

depth range due to the lack of high frequency information, and they do not have the cyclic feature

that log data of other wells have. So that the interbed reverberations in wave fields built from these

logs may not be as strongly developed as in other wells and thus have a weaker extrinsic Q effect on

the entropy peak value. To demonstrate the point, I computed the transmission loss (TL) exhibited

by the wells, since transmission loss and external cumulative attenuation are usually positively

related (Schoenberger and Levin, 1978). If Blackfoot 1409 has a smaller transmission loss than

others, is should also has a weaker extrinsic Q. The one-way transmission loss of a normal incident

wave with amplitude = 1 recorded by the bottom receiver (at 1300m) was computed, according

to:

one−way transmission loss = 1−
N

∏
k=0

(1−Rk). (4.9)

In which N is the total number of layers through which the wave has transmitted, R is the reflection

coefficient of the kth interface.

One-way transmission loss in the depth range 0-1300m for seven wells are listed in table 4.3.

It turns out that the value of Blackfoot 1409 is significantly smaller than others, being only half of

the largest value. Thus it is reasonable to say that this well has the weakest extrinsic Q among all.

As a result, it should have the smallest entropy peak increase.

To sum up, the reason that Blackfoot 1409 failed to show the positive relation between extrin-
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Figure 4.3: P-wave velocity and density logs in depth range 400-600m of well: (1) Roemer Bell
No. 1-1; (2) Kissel A No. 1-8; (3) Blackfoot 1227; (4) Blackfoot 1409; (5) Hussar 12-27-25-21;
(6) Hussar 14-27-25-21; (7) Hussar 14-35-25-21.
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Figure 4.4: Frequency bands of wave field (c) built from well Blackfoot 1227 (a) (figure 3.4) and
Blackfoot 1409 (b).
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sic Q strength and entropy peak increase as other wells did is very likely that its Q was poorly

estimated by the spectral ratio method.

Table 4.3: One-way transmission loss of seven wells
Roemer Bell Kissel A Blackfoot Blackfoot Hussar Hussar Hussar

No. 1-1 No. 1-8 1227 1409 12-27-25-21 14-27-25-21 14-35-25-21
TL 0.99 0.97 0.86 0.51 0.86 0.88 0.86

4.4 Chapter summary

The experiment in this chapter showed promise for utilizing an information measure on the wave

fields for estimating the relative strength of intrinsic Q and extrinsic Q when they both affect

the seismic wave. Among seven wells that were tested, six exhibited good agreement with the

hypothesized relationship of extrinsic Q strength relative to total Q and the entropy peak increase

from wave field (a) to wave field (d) built from the wells. Specifically, the stronger extrinsic Q is

relative to total Q, the larger the entropy peak increase would be.

In figure 4.2, all wells except Blackfoot 1409 appear to have positive entropy peak increase,

when extrinsic Q strength in their positions ranges from 20% to 60%. It indicates that the impact of

extrinsic Q on entropy is more influential than that of intrinsic Q. When both Q take 50% of total

attenuation, the entropy peak of wave field (d) is larger than that of wave field (a), instead of being

comparable. Therefore, I provisionally conclude that whenever the entropy peak increase is nega-

tive, it could mean that the extrinsic Q strength over the depth interval of interest is considerably

weak, likely to take less than 20% of total attenuation.
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Chapter 5

INFORMATION MEASURE ON A FIELD VSP DATA SET

5.1 Chapter overview

The previous two chapters focused on the information measure of the synthetic data. However,

the situation is likely simpler for synthetic data than for real data, mainly due to the absence

of many kinds of interference (surface-related multiples, noise from environment and acquisition

equipments, etc.) in synthetic data. These interferences tend to increase the disorder in the wave

field and make the seismic events less well distinguished by the amplitude bin. Thus I wonder if

the information measurement will be as definitive when applied to more complex real VSP data.

In this chapter, the entropy calculation procedures developed and validated in the previous

chapters are partially repeated and applied to a real VSP data. I applied the first-order entropy

calculation to four different real VSP data sets, in which the internal multiples and absorption are

selectively eliminated/compensated by appropriate seismic processing, to form a similar controlled

trial as for the synthetic data, then used the entropy variation results of the data sets to estimate the

extrinsic Q strength of the region.

5.2 Data set

Experiments of this chapter use the zero-offset record of a multicomponent walkaway VSP dataset

(Hall et al., 2012). CREWES participated in the data acquisition in 2011. The location and the

identity of the company are not disclosed by request. Data from this area are suitable for the

stratigraphic filtering study because well logs acquired at a nearby position reveal good layering

character, and comparison between log data and the simulated wavelet implies that the stratification

of the area is nonresolvable (figure 5.1). Nevertheless, the stratification does not seem to have an
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apparent cyclic feature, from which a weak stratigraphic filtering effect should be expected.

Figure 5.1: Log data from a nearby well position of the VSP data used in the research, and its
comparison with the simulated source wavelet.

5.3 First-order entropy calculation on real VSP data

5.3.1 Calculation strategy

A controlled trial consisting of four wave fields including various attenuating factors was desig-

nated for the information measure. The wave fields contain, respectively, attenuating effects of:

a) neither absorption nor stratigraphic filtering ; b) stratigraphic filtering only; c) absorption only;

and d) both absorption and stratigraphic filtering.

To get the wave fields, the raw zero-offset VSP record was pre-processed to preferentially

eliminate the undesired attenuating factors. Seen in Figure 5.2, the record has satisfactory S/N
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ratio, and P-wave events such as primaries, surface-related multiples, internal multiples can be

recognized. S-wave events in the record are ignored, because the wave type does not really matter

in the information measure and the S-wave energy is quite weak compared to the P-wave energy.

Figure 5.2: The zero-offset VSP record of an anonymous multicomponent walkaway VSP data set.

To prepare the data for the controlled trial, I used a 3.2 exponential gain to compensate the ab-

sorptive attenuation based on the record’s intrinsic Q estimated by the spectral ratio method (detail

is in following section), this way the absorption will not be overly or insufficiently compensated in

general. I used predictive deconvolution to remove surface-related multiples and internal multiples

in the record. The pre-processing went like this: a predictive deconvolution was first applied to

the record to remove source ghost. This generated wave field (d). Then I applied a 3.2 exponential

gain to (d) to get wave field (b). Meanwhile, I applied another predictive deconvolution to wave

field (d) to eliminate the internal multiples in the field to get (c). To get wave field (a), both the

exponential gain and the internal-multiple-eliminating predictive deconvolution were applied to

wave field (d). Figure 5.3 and 5.4 show the processed wave fields. Most parts of the four wave
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fields hold decent S/N ratio except the near surface zone; thus data from the first 30 traces were

discarded in the information measure.

5.3.2 Results

The time domain first-order entropy calculation was applied to the VSP records using the first-

order entropy algorithm in chapter 3. Amplitude bin size used is 0.001. Comparison of entropy

variation results for the four wave fields is displayed in figure 5.5.

Focusing on the rising portion of the entropy curves, it can be seen that:

(1) Wave fields including internal multiples contribute to entropies with larger peaks than entropies

calculated from wave fields excluding internal multiples, seen by comparing red and purple

curves to the blue and yellow ones respectively;

(2) Derived from wave fields which include absorption, the yellow and purple entropy curves have

smaller peaks than red and blue ones;

(3) Overall, the most disordered wave field contributes to the largest entropy (red curve) and the

least disordered wave field contributes to the smallest entropy (yellow curve).

Intrinsic Q and extrinsic Q have opposite effects on the entropy variation result, just like in

the synthetic data experiment. I then examined the possibility that one could use this measured

entropy result to predict the extrinsic Q strength relative to total Q in this region.

5.4 Estimation of extrinsic Q strength of the region

A negative entropy peak increase from wave field (a) entropy to wave field (d) entropy can be

derived from figure 5.5. The number being negative implies that extrinsic Q strength of the region

is considerably weak, accounting for less than 20% of the total attenuation strength.

I measured the Q strength in wave field (c) and (d) of figure 5.4 with the spectral ratio method

as a reference. Amplitude spectrum information of 10-250Hz was utilized because the raw VSP
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Figure 5.3: Processed zero-offset VSP records. (a) is obtained by applying a 3.2 exponential
gain and two passes of predictive deconvolution (aiming at removing source ghost and internal
multiples) to figure 5.2 record; (b) is obtained by applying a 3.2 exponential gain and one time of
predictive deconvolution (aiming at removing source ghost) to figure 5.2 record.
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Figure 5.4: Processed zero-offset VSP records. (c) is obtained by applying two passes of predictive
deconvolution (aiming at removing source ghost and internal multiples) to figure 5.2 record; (d) is
obtained by applying one time of predictive deconvolution (aiming at removing source ghost) to
figure 5.2 record.
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Figure 5.5: The first-order entropy variation result for wave fields in figure 5.3 and 5.4 (zooming
on time 0-0.5s).
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record has a broad frequency band (figure 5.6). Figure 5.7 and 5.8 show the measured intrinsic and

apparent cumulative attenuation (CA) Bx from wave field (c) and (d) respectively. The final αx is

displayed in figure 5.9, with detailed information listed in table 5.1. Seen in table 5.1 that extrinsic

Q accounts for approximately 15% of the total Q in this region.

The extrinsic Q strength, implied by the entropy behavior and calculated from the attenuation

determination method, agrees with each other.

Figure 5.6: Frequency band of the VSP record in figure 5.2.

Table 5.1: αx distribution information of the anonymous Canadian heavy oil reservoir
Depth range (m) 120-328 330-502

Intrinsic αx (nepers/wavelength) 0.069 0.080
Apparent αx (nepers/wavelength) 0.080 0.094

Percentage of extrinsic αx in total αx (%) 15 15

5.5 Chapter summary

Intrinsic and extrinsic Q have opposite effects on the measured entropy of the field VSP data. And

the extrinsic Q strength estimated from the entropy behavior supports the speculation made at the

end of chapter 4, that when the entropy peak of a wave field (d) which contains both intrinsic Q
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Figure 5.7: CA distribution with depth of wave field (c) in figure 5.4.

Figure 5.8: CA distribution with depth of wave field (d) in figure 5.4. Orange points are abandoned
when linear fitting Bx for kx.
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Figure 5.9: αx distribution with depth of of wave field (c) in figure 5.4 (blue) and of wave field (d)
in figure 5.4 (red). Solid lines show their mean values.
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and extrinsic Q effects is smaller than the entropy peak of a wave field (a) which is identical to

(d) in every other aspects but contains no frequency-dependent attenuation, it is implied that the

extrinsic Q strength in the studied region is considerably weak and possibly accounts for less than

20% of the total attenuation strength.

The real VSP data I used has a good S/N ratio, so the information measure was able to present

results that were expected. However, this brings up the thought that, for real data that has poor S/N

ratio, whether or not the information measure is going to be as efficient needs further investigation.
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Chapter 6

CONCLUSIONS

My research studied the similarities and differences between the intrinsic Q and extrinsic Q. These

two processes affect seismic waves almost identically, but have different physical mechanisms.

Intrinsic Q describes the wave energy dissipation due to rock properties, while extrinsic Q is related

to energy scattering caused by internal multiples.

The advantage of using information measure (Shannon entropy), is that we can therefore inves-

tigate the energy disorder inside the wave field caused by amplitude attenuation and dispersion and

monitor the change of disorder with wave propagation (with time), using the designed research

scheme. Experiments in this research show that entropy serves as a “magnifier”. It enhances

the process difference between internal and external attenuation, and displays the difference in a

visible, measurable form. The first-order and second-order entropy calculations in time domain in-

formation measure, although having divergent outcomes, convey the same idea that, when a proper

amplitude bin size is chosen, entropy gives opposite responses to absorption and internal multiples.

Specifically, internal multiples tend to raise the entropy curve upward and absorption is more likely

to pull the entropy curve downward. I also showed that this opposite response of entropy might be

utilized to estimate the relative strength of intrinsic Q and extrinsic Q in a wave field in a scenario

that they are both active.

The information measure devised in this research has limitations, though. First, the entropy

response is sensitive to the amplitude bin size used in the calculation. A change of amplitude

bin size would almost definitely give rise to a change in the entropy response, while the size of the

effect is unknown. This adds uncertainty to the approach. Second, Shannon entropy is a qualitative

measurement of the seismic wave field, means that there are no definite relationships between it and

seismic attributes. So that one entropy peak increase is not enough to let us determine the extrinsic
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Q of the wave field, it needs to be compared with the entropy peak increase from the data sets with

known extrinsic Q, as in chapter 4. Considering that the measured entropy result is affected by the

data quality, for data sets, especially the field data sets, that are uneven in quality (e.i. S/N ratio),

the comparison among their information measure results will be unreliable. According to this, it is

suggested that the information measure be conducted only on synthetic data sets, as a supplement

of the field VSP studies.

Seven well logs and a real VSP data set are tested in this research. Although this is far from

enough to confirm the universal applicability regarding this information measure, the results show

promise in assisting stratigraphic filtering analysis.

61

emma
Highlight



Appendix A

DEFINITION OF INTRINSIC Q

In the case that seismic wave propagates in an anelastic media, the wave amplitude is attenuated

by the internal friction of the material, and wave energy is partially transformed into heat. This

process is usually referred to as absorption or energy dissipation and is measured by

1
Q

=−4E
2πE

(A.1)

in which Q is the dimensionless quality factor of the media, E is the maximum energy stored in

the wave and4E is the energy loss per wavelength (Aki and Richards, 1980).

Thus, the spatial amplitude attenuation for any plane wave with frequency ω is

Ax(ω) = A0(ω)exp− ωx
2cQ

(A.2)

with Ax being the attenuated amplitude after wave propagates a distance x, A0 being the original

amplitude and c being the phase velocity (Aki and Richards, 1980). The quality factor Q can be a

constant number in the seismic frequency range under some conditions, which is called a constant

Q theory.

Besides that, for a causal signal, the attenuation is connected to wave dispersion, where differ-

ent frequency components of a seismic wave will travel in different velocities (Futterman, 1962).
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Appendix B

COMPUTING NUMBER OF EVENTS IN THE WAVE FIELD

OF A HORIZONTAL MEDIA WITH AN ABSORPTIVE

UPPER BOUNDARY

Consider the wave field generated at normal incidence to a horizontal N-layer media (N ≥ 2) with

an absorptive upper boundary, where each layer is homogeneous inside (figure B.1). If we only take

events that have no more than three bounces into account, the downgoing wave field includes the

first break and the first-order internal multiples and the upgoing wave field includes the primaries

and the second-order internal multiples. As shown in the figure, “P” represents primary, “IM”

represents internal multiple and the ordered numbers following the letters represent from which

interfaces the event has been reflected successively.

To know the number of upgoing and downgoing events and compare them, the number of each

kind of event needs to be calculated. First, the first break excites N primaries at N interfaces.

Then, each primary excites a downgoing first-order internal multiple when passing through an

interface, so the primary generated by the mth interface excites first-order internal multiples at

m− 1 interfaces above it, excluding the surface. In total, there are ∑
N
1 (m− 1)(m is the variable)

first-order internal multiples in the field. The generation of the second-order multiples is similar,

that the first-order multiples excite it when passing through interfaces below which the first-order

multiples are generated from. Each IMmb (m = 1,2, . . . ,N;b = 1,2, . . . ,m− 1) will excite N− b

second-order internal multiples, in total there are ∑
m−1
1 (N−b)(b is the variable;m = 1,2, . . . ,N)

second-order internal multiples in the field.

Now, the total number D of downgoing events in the wave field is
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Figure B.1: Part of the wave field generated from a normal incidence (for better demonstration,
wave propagation is not normal to the interfaces in figure) at a horizontally N layered media
(N ≥ 2)with an absorptive upper boundary. Each layer is homogeneous inside.

D = num of first break + num of the first-order internal multiples

= 1+
N

∑
1
(m−1), (B.1)

and the total number U of upgoing events in the wave field is

U = num of primaries + num of the second-order internal multiples

= N +
N−1

∑
1
(N−b)+

N−2

∑
1
(N−b)+ . . .+

1

∑
1
(N−b). (B.2)

Note that the second part of the equations are actually the same, both are summation from 1 to

N−1, so

U−D = (N−1)+
N−2

∑
1
(N−b)+

N−3

∑
1
(N−b)+ . . .+

1

∑
1
(N−b)> 0. (B.3)

There are more upgoing events than downgoing events in the wave field when no surface multiples

exist.
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