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Abstract

Geostatistics offers a robust way to estimate the spatial distribution of reservoir properties. Geo-

statistical methods, such as kriging, cokriging, and sequential simulation have been applied to

integrate well-log data and seismic attributes. However, conventional deterministic methods of

geostatistics, kriging and cokriging often have difficulty identifying the characteristics of litho-

logic reservoirs because only one secondary attribute is incorporated. To decrease the uncertainty

and improve the definition of the final estimate, two modified techniques, cokriging with multi-

ple secondary attributes and block cokriging with multiple secondary attributes, are implemented.

However, these deterministic methods can only provide one predicted result, which has trouble cap-

turing the natural heterogeneity of reservoirs and assessing the uncertainty of the predicted map.

To solve this issue, an improved stochastic technique, sequential simulation using multi-variable

cokriging, is presented.

All these presented techniques are applied to real datasets. Case studies are presented to predict

the thickness of the reservoir, total organic carbon, and porosity. The final predicted maps demon-

strate that these methods can enhance the lateral resolution. Leave-one-out cross-validation is used

to evaluate the construction models, and shows that the uncertainty of the estimate can be reduced

due to the use of more seismic attributes than traditionally implemented, while still optimizing

cross-validation.
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Chapter 1

Introduction

1.1 Introduction

Geostatistics can be regarded as a collection of numerical techniques that deal with the characteri-

zation of spatial attributes, employing primarily random models (Olea, 1999). Recently, geostatis-

tics has become widely used in geoscience for reservoir characterization and modelling. The aim

of geostatistics is to provide accurate estimates on unsampled locations with a quantification of the

uncertainty. Geostatistical prediction differs from classical estimation because it relies on spatial

relationships, such as variogram analysis. If there is a strong spatial correlation between random

samples, then it is possible to estimate more precisely.

Figure 1.1: The family of geostatistics

The geostatistical approaches use spatial correlation to model the lateral variation of the reser-

voir properties (Ambrose, R.J., Hartman, R.C., Diaz Campos, M., Akkutlu, I.Y. and Sondergeld,
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C., 2010). Techniques include geostatistical estimation (also called the deterministic method),

such as kriging and cokriging; geostatistical simulation (also called the stochastic method), such

as sequential Gaussian simulation (SGS) (Figure 1.1). Kriging can interpolate a value distributed

on a random field at an unsampled location based on the sample values (primary variable) only at

nearby locations (Doyen, P. M., 1988). Cokriging, an extension of kriging, reduces the smooth ef-

fects and provides specific prediction of the estimate by incorporating seismic data as a secondary

variable, due to its more complete distribution. The seismic attribute has to be effective in order to

introduce more geological information and is usually validated by its correlation with the primary

variable. Cross-plot analysis can help to determine the correlation between primary and secondary

variables. As deterministic methods, kriging and cokriging can only provide one predicted result,

which may not have the capability to characterize heterogeneity in petroleum reservoirs.
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(a) The work-flow for geostatistical estimate

(b) The work-flow for geostatistical simulation

Figure 1.2: The work-flow for geostatistical methods

The stochastic simulation technique provides a series of equally valid and possible realizations

that indirectly reflect the distribution of reservoir properties. Each realization is built by the mean

and covariance estimated at each grid cell using kriging, cokriging, or a least-squares method. As
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an additional benefit, the geostatistical simulation method has the ability to quantify the uncertainty

of the estimation by generating a probability map. The work-flow for the geostatistical estimation

and simulation are displayed in Figure 1.2 (a) and Figure 1.2(b).

One of the challenges in cokriging is that traditionally only a single secondary variable is used.

To optimize the secondary variable in cokriging, many techniques have been proposed, such as

multi-attribute analysis and super-secondary dataset method. However, both methods have limi-

tations. The multi-attribute method assumes that there is high correlation between the estimated

area and the well locations; the super-secondary dataset method assumes that all datasets must be

a linear combination of each other.

In this thesis, to reduce these assumptions, three modified geostatistical methods, cokriging

with multiple secondary variables in Chapter 5, block cokriging with multiple secondary attributes

in Chapter 6, and sequential simulation using multi-variable cokriging in Chapter 7, are intro-

duced and evaluated. These methods differ from traditional ones by introducing more than one

secondary variable. It is beneficial to use multiple secondary variables to support the prediction

because each secondary variable may have the unique information about the reservoir characteris-

tics. In summary, the objective of this work is to present the modified techniques and evaluate their

performance through applications using real datasets. Additionally, the traditional techniques are

reviewed and described, including kriging in Chapter 2, leave-one-out cross-validation in Chapter

3, and cokriging in Chapter 4.

1.2 Hardware and software

All the work in this thesis has been done on the desktop computer provided by the CREWES project

of the Department of Geology and Geophysics at the University of Calgary. The programming code

was developed by Matlab in Chapter 5, 6, and 7 where CGG Hampson-Russell software has been

employed to prepare well-log data (primary variable) and seismic data slices (secondary variable).

LATEX was used for formatting text, equations, and figures in this work.
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1.3 Testing datasets

1.3.1 Blackfoot 3C-3D dataset

The Blackfoot 3C-3D dataset was from the CGG Hampson-Russell software guide dataset and

was given to Hampson-Russell from the CREWES project. It was used to implement kriging

(in Chapter 2), cokriging (in Chapter 4), and sequential Gaussian simulation using multi-variable

cokriging (in Chapter 7). The Blackfoot field, located in southern Alberta, represents a style of

stratigraphic trap common in the Western Canadian Basin (Goodway, W. and Tessman, D.J., 2001).

The Blackfoot 3C-3D seismic survey was recorded in 1995. The zone of interest is the Mannville

Group within the Glauconitic formation.

There were twelve wells involved in this study area, all of which contained calculated porosity

logs. The porosity was treated as the primary variable, and was computed an average between the

picked top and base of the zone of interest in each well. Figure 1.3 shows the well locations in the

survey area and the porosity value at each well location.

Figure 1.3: Well location display with porosity values

The secondary variable consisted of a data slice extracted from the acoustic impedance inver-

sion of the stacked P-wave seismic data. To obtain the inversion volume, horizons were picked on
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the seismic section, an initial model was built from the well logs, and then the model was repeatedly

perturbed until the synthetic seismogram for each trace in the volume had the best least-squares

match with the original data. Figure 1.4(a) shows crossline 18 from the seismic volume, correlated

sonic logs from two intersecting wells, 14-09 and 13-16, and the picked channel top. Figure 1.4(b)

shows crossline 18 from the inverted volume. The color key indicates impedance. The data slice

of acoustic impedance is displayed in Figure 1.5.

(a) Crossline 18 from the seismic volume

(b) Crossline 18 from the acoustic impedance inverted volume

Figure 1.4: Crossline 18 from the 3D seismic volume
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Figure 1.5: Data slice of acoustic impedance inversion

1.3.2 Thickness dataset

The thickness dataset was provided by Murphy Oil Corporation and used for evaluating the per-

formance of cokriging with multiple secondary variables in Chapter 5. The study area is located

in northern Alberta and includes 11 drilled wells (Figure 1.6). In this case, the seismic data pre-

conditioning and inversion have been done by CGG GeoConsulting group. A time window from

10 ms above the top reservoir to 10 ms below the base of the non-reservoir clastic was used to

produce two seismic attribute slices, seismic amplitude slice and Vp/Vs ratio slice exacted from

two volumes shown in Figure 1.7 and Figure 1.8 respectively.
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Figure 1.6: Well log distribution and its thickness in study area

Figure 1.7: Seismic raw amplitude from an angle stack between 80 and 290

Figure 1.8: Inverted Vp/Vs ratio volume
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1.3.3 Total organic carbon dataset

The total organic carbon dataset (TOC) was from a producing shale gas reservoir located in British

Columbia, Canada. The number of estimated grid points is over 52,000. Eight drilled wells are

distributed in this survey area and shown in Figure 1.9. The value of TOC at each well location is

indicated by the color bar. The seismic data volumes were provided by Seitel Canada Ltd. Data

cleaning, well-log analysis, well tie, and inversion were completed by CGG GeoConsulting group.

A 13 ms window above the base of target zone of interest was used to create two seismic data

slices, one is the seismic amplitude shown in Figure 1.10 and another is the VpVs ratio in Figure

1.11.

Figure 1.9: Well distribution with TOC values
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Figure 1.10: Data slice of raw amplitude of an angle stack

Figure 1.11: Data slice of average Vp/Vs ratio
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Chapter 2

Variogram and Kriging

2.1 Variogram

The variogram is a function used to describe the degree of spatial continuity of a dataset. Spatial

continuity exists in most earth datasets (Isaaks and Strivastava, 1989). For example, if two data

points are closer to each other, their values are more similar than two data points that are farther

away.

2.1.1 Introduction to variogram

Wackermagel (2003) presented the theory for all possible well locations, which can be written as

2γ(h) = E
{
[Z(u)−Z(u+h)]2

}
(2.1)

where γ(h) is called the semi-variogram.

In more practical terms, the variogram for lag distance h is defined as the average squared

difference of values:

2γ(h) =
1

N(h)∑ [Z(u)−Z(u+h)]2 (2.2)

where N(h) is the number of pairs of well values for lag h.

Under the assumption of second-order stationarity, the relationship between the covariance

function and semi-variogram is

C(0) =Cov(Z(u,u)) =Var(Z(u)) (2.3)

where the covariance with zero lag is equal to the global variance of the variable.
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Also, the semi-variogram, with a certain lag h, is equal to the difference between the covariance

with zero lag and covariance with the same lag.

γ(h) = C(0)−C(h) (2.4)

2.1.2 Characteristics of the semivariogram

As the lag distance between pairs increases, the variability increases, which means the correspond-

ing variogram value will also increase. However, as the lag distance keeps increasing, then the

variogram value reaches a plateau. The distance where the variogram reaches this plateau is called

the Range. When the variogram reaches the range, the plateau is called the Sill. The variogram

value should be zero when the lag distance is equal to zero. But, in nature, there are several fac-

tors, such as measurement errors, that may cause a discontinuity while the lag is equal to zero. The

vertical jump from the value of zero at the origin to the value of the variogram is called the Nugget

Effect (Isaaks and Strivastava, 1989). Nugget, Range, and Sill parameters used to define a spatial

variogram are shown in Figure 2.1.

Figure 2.1: The spatial variogram (from Hampson-Russell software guide)
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2.1.3 Variogram modelling

The empirical semi-variogram provides spatial information only at certain measured distances, but

not all distances. Therefore, it is necessary to fit an empirical semi-variogram. There is no “best”

semi-variogram model (Goovaerts, 1997), but here are four most common variogram model types:

the Spherical, Exponential, Gaussian, and Nugget variogram models.

Spherical model

Suppose the range of this model is a. Then, the semi-variogram and covariance for lag distance h

are modelled by

γ(h) =


1.5
|h|
a
−0.5

(
|h|
a

)3

, if | h |< a;

1, otherwise.
(2.5)

C(h) =


1−

(
1.5
|h|
a
−0.5

(
|h|
a

)3
)
, if | h |< a;

0, otherwise.

(2.6)

Exponential model

In the exponential model, a is the practical range which is the point where γ(| h |= a) is 95% of

the sill value. The semi-variogram and covariance for lag distance h are modelled by

γ(h) = 1− exp
[
−3
|h|
a

]
(2.7)

C(h) = exp
[
−3
|h|
a

]
(2.8)

Gaussian model

In the Gaussian model, a is also the practical range which is the point where γ(| h |= a) is 95%

of the sill value. Then, the semi-variogram and covariance for lag distance h are modelled by

γ(h) = 1− exp
[
−3
|h|2

a2

]
(2.9)

C(h) = exp
[
−3
|h|2

a2

]
(2.10)
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Nugget model

For the Nugget model, the semi-variogram and covariance introduce a discontinuity at the origin

γ(h) =

 0, if | h |= 0;

1, otherwise.
(2.11)

C(h) =

 1, if | h |= 0;

0, otherwise.
(2.12)

2.2 Kriging

Kriging is an interpolation technique using only sparsely sampled data points. It is different from

the Inverse Distance Weighting (IDW) method because the kriging weights not only rely on the

distance between the estimate point and the observed point, but also are correlated with the spatial

distribution based on the semi-variogram. A semi-variogram model defines the spatial relationship

between all the sample data points.

2.2.1 Introduction to kriging

Kriging is often associated with the acronym BLUE (Best, Linear, Unbiased, Estimation) where:

Best: This method is “best” because it minimizes the variance of the errors.

Linear: The final estimates are weighted linear combinations of the input samples.

Unbiased: The mean residual or error is equal to 0.

Estimate: The final result is a prediction.

In mathematics, the estimate point in kriging can be calculated as

a0 = ω1a1 +ω2a2 +ω3a3 +ω4a4 + · · · (2.13)

where a0 is an estimate, ωi is the corresponding weight of the ith observed value, ai.
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In order to compute the estimated value a0 in Eq. 2.13, a vector of weights (ω1,ω2, ...ωn) is

the only parameter required to be calculated since the observed samples (a1,a2, ...an) are known

points. The vector of weights can be written as

C w = d (2.14)

where C is the covariance matrix of the known points, w is a vector containing the corresponding

weights, and d is the covariance vector between the estimate point and known points.

Eq. 2.14 can be rewritten as

w = C−1 d (2.15)

Examples of the covariance matrix C and weight covariance vector are given in the next section.

2.2.2 Simple kriging and ordinary kriging

(1) Simple kriging

For simple kriging, the mean is assumed to be the same in the entire estimate domain. In other

words, assume the constant, known mean m(u) is equal to m , (m(u) = m), so that

ZSK(u) = m+Σλa(u) [Z(ua)−m] (2.16)

This estimate (Eq. 2.16) is automatically unbiased because we assume E [Z(u)−m] = 0. Therefore,

E [ZSK(u)] = m = E [Z(u)].

The corresponding weights in the simple kriging method can be written as a matrix form as

C11 C12 C13 · · · C1n

C21 C22 C23 · · · C2n

C31 C32 C33 · · · C3n

...
...

... . . . ...

Cn1 Cn2 Cn3 · · · Cnn





ω1

ω2

ω3

...

ωn


=



C10

C20

C30

...

Cn0


(2.17)
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where Ci j is the covariance between two points i and j; ωi is the kriging weight of the ith measure-

ment point.

To compute the vector of weights of simple kriging, Eq. 2.17 can be rewritten as

ω1

ω2

ω3

...

ωn


=



C11 C12 C13 · · · C1n

C21 C22 C23 · · · C2n

C31 C32 C33 · · · C3n

...
...

... . . . ...

Cn1 Cn2 Cn3 · · · Cnn



−1

C10

C20

C30

...

Cn0


(2.18)

Consider a simple kriging example with two sample points (Figure 2.2). Suppose there are two

known points a1 and a2, and a0 is the point to be predicted.

Figure 2.2: Simple kriging with two points (from Hampson-Russell software user guide)

The corresponding weights of the simple kriging technique can be written asω1

ω2

=

 C0 C(h12)

C(h12) C0


−1C(h01)

C(h02)

 (2.19)

(2) Ordinary kriging

For ordinary kriging, we assume that there is a local mean around each predicated point instead of

16



a constant mean in the whole estimate area. This means m(ua) = m(u) for each nearby data. The

function of ordinary kriging can be written as

ZOK(u) = m(u)+∑λa(u) [Z(ua)−m(u)]

= ∑λa(u)Z(ua)+ [1−∑λa(u)]m(u)
(2.20)

To remove the unknown local mean, m(u), we set the sum of the kriging weights ( ∑λa(u) ) equal

1. Thus, the function of ordinary kriging can be rewritten as

ZOK(u) = ∑λa(u)Z(ua) (2.21)

where ∑λa(u) = 1.

The corresponding weights of ordinary kriging can then be defined in the matrix form as

C11 C12 C13 · · · C1n 1

C21 C22 C23 · · · C2n 1

C31 C32 C33 · · · C3n 1
...

...
... . . . ...

...

Cn1 Cn2 Cn3 · · · Cnn 1

1 1 1 · · · 1 0





ω1

ω2

ω3

...

ωn

µ


=



C10

C20

C30

...

Cn0

1


(2.22)

where Ci j is the covariance between two points i and j; ωi is kriging weight of the ith measure-

ment point; µ is the Lagrange parameter.

To compute the vector of weights of ordinary kriging, Eq. 2.22 can be rewritten as



ω1

ω2

ω3

...

ωn

µ


=



C11 C12 C13 · · · C1n 1

C21 C22 C23 · · · C2n 1

C31 C32 C33 · · · C3n 1
...

...
... . . . ...

...

Cn1 Cn2 Cn3 · · · Cnn 1

1 1 1 · · · 1 0



−1

C10

C20

C30

...

Cn0

1


(2.23)
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2.3 Case study

In the kriging family, ordinary kriging is very popular because the semi-variogram exhibits the

local stationarity (Gonzalez, J., 2013). In this study, the ordinary kriging method will be applied

to the Blackfoot 3C-3D dataset to predict porosity. Porosity estimation plays an important role in

geoscience since it is an essential key in predicting reservoir and elastic rock properties. Many

techniques and algorithms have been introduced to predict porosity in subsurface reservoirs, for

instance, kriging. The kriging work-flow designed is shown in Figure 2.3.

Figure 2.3: Kriging work-flow
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The well distribution with porosity values is displayed in Figure 2.4 where the color bar indi-

cates the porosity value. To compute the ordinary kriging weights, an auto-variogram based on the

sampled porosity data has been constructed and is shown in Figure 2.5. The final kriged porosity

map is displayed in Figure 2.6.

Figure 2.4: Well location display with porosity values

Figure 2.5: Well to well variogram

Compared to the well distribution map with porosity values (Figure 2.4), the interpolated result

(Figure 2.6) generated by kriging illustrates the main trend of the porosity distribution but is overly
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Figure 2.6: Kriging interpolation with porosity

smooth. From the produced map, the “bulls-eyes” effect around the well intersections can be

observed. It occurs because the ordinary kriging method averages the values between sample data

points.

2.4 Conclusions

In this chapter, the kriging method was introduced and applied to the Blackfoot 3C-3D dataset to

generate a porosity map. There are three advantages of kriging. (1) The kriging weights are more

accurate than other mapping methods because they are calculated based on the semi-variogram

that captures the spatial relationship between sample data points. (2) The kriging method is easy

to use. Only the primary data and its semi-variogram are required during the process. (3) The

kriging method honours the well-log data (the primary data) at all the well locations. However,

two disadvantages can be observed as well. (1) The predicted porosity values appear as being too

smooth. (2) The kriged map shows a “bulls-eyes” effect.
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Chapter 3

Cross validation

3.1 Introduction

Cross-validation is a testing method used to measure the predictive performance of an estimated

model. In other words, cross-validation is used to evaluate how well the model can generalize

to an independent dataset (Isaaks and Strivastava, 1989). In a prediction problem, over-fitting an

estimated model may not work well. For instance, if we keep adding higher order terms to make

the data fit better, then after applying this model to a new dataset, the prediction could get worse

as the higher order terms are added, since the over-fitting can fit noisy samples too well. Cross-

validation can be used to prevent over-fitting. Additionally, it allows us to compare the predicted

value and the true value using only the information available in the sample dataset.

3.2 Classification

3.2.1 Non-exhaustive cross-validation

The non-exhaustive cross-validation method will not compute all the combinations for separating

the sample points. In this section, two methods, Holdout and K-fold, are introduced.

(1) Holdout method

The holdout method requires two datasets. One is called the training dataset and another is called

the validation dataset. The training dataset is fitted to the model. The validation dataset is used

to evaluate the model. After multiple runs, the errors between the true values and the correspond-

ing predicted values are accumulated as an indicator to evaluate the model. The disadvantage

of this method is that the evaluation results may be highly different depending on which data
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points are assigned to the training set and which data points are assigned to the validation set.

(www.cs.cmu.edu/ schneide/tut5/node42.html)

(2) K-fold method

In K-fold cross-validation, the dataset is randomly divided into K equally sized sub-datasets. Each

sub-dataset is not only used as the validation dataset for evaluating the model, but also as the

training dataset. The validation process has to be repeated K times. In each time during the

process, one of K sub-datasets is used as the validation dataset only once. The errors from each

process will be averaged as the final evaluation result. The advantage of this method is that all

sample points are used for both training and validation.

3.2.2 Exhaustive cross-validation

The exhaustive cross-validation method involves dividing the data into all possible combinations

of training and validation datasets.

(1) Leave-one-out cross-validation

Leave-one-out cross-validation calculates the difference between the predicted value and the actual

value by removing one sample point at a time and computing the root-mean-square (RMS) error

each time. The accuracy measures are described as below and displayed in Figure 3.1.

Suppose there are n independent sample points Z(x1),Z(x2), ...Z(xn).

(1) Let the sample point Z(xi) be the test data. Then, fit the model by the rest of the sample

points. The error between the true value and the predicted value is computed.

(2) Repeat n times, so that all the sample points are treated as a test data exactly once.

(3) Compute the average error of leaving each point out and express as

22



ERMS =

√
1
N

N

∑
i=1

{
z(xi)− ẑ(xi)

}2 (3.1)

where z(xi) is the actual value and ẑ(xi) is the estimated value by leaving one out.

Figure 3.1: Leave-one-out cross-validation

In Figure 3.1, the blue point is a test data and all the rest of white points are treated as training

data in each time.

In the following of chapters, the leave-one-out cross-validation will be used to evaluate cokrig-

ing (in Chapter 4) and cokriging with multiple secondary attributes (in Chapter 5).
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Chapter 4

Cokriging

4.1 Introduction

Geostatistical methods, such as cokriging, can be applied to integrate well-log data and seismic

data to improve the lateral resolution of the final results. Cokriging, an extension of kriging, has

been employed in porosity prediction since it was introduced into the geophysical industry by

Doyen (1988) based on the theory developed by Matheron (1965). The objective of the cokriging

technique is to use attributes, such as acoustic impedance, amplitude or travel time extracted from

3D seismic data, as a secondary variable to guide the interpolation of related well log data, which is

referred to as the primary variable, such as porosity, shale volume or depth. The primary variables

are usually sparsely sampled, but the secondary variables are densely sampled over the survey area

and are assumed to be closely correlated with the primary variable (Figure 4.1).

Figure 4.1: Distribution of primary and secondary variables, where primary variables are shown as
• symbols and secondary variables as + signs.
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In Figure 4.1, the symbol + represents the seismic data (secondary variable), which are dense,

but with poor vertical resolution; the symbol • represents the well-log data (primary variable),

which are sparse, but with good vertical resolution.

Secondary variables bring useful information related to the primary variable (Isaaks and Strivas-

tava, 1989). Doyen (1988) applied cokriging to predict porosity by acoustic impedance, extracted

from 3D seismic data, as the secondary variable. Cokriging produces maps that contain trends con-

structed by the spatial correlation function to model the lateral variations of the reservoir properties

(Doyen et al.,1996).

4.2 Ordinary cokriging

The cokriging function is a linear combination of primary and secondary variables as

u0 =
n

∑
i=1

aiui +
m

∑
j=1

b jv j (4.1)

where u0 is the estimate at location 0; ui is the primary variable and the number of the primary

variables at the nearby locations is n where i = 1, . . . ,n; v j is the secondary variable and the num-

ber of the secondary variables at the nearby locations is m where j = 1, . . . ,m; ai and b j are the

corresponding weights of primary and secondary variables.

To satisfy the unbiasedness condition, the expected value of the estimate can be written as

E{u0} = E{∑n
i=1 aiui +∑

m
j=1 b jv j}

= ∑
n
i=1 aiE{ui}+∑

m
j=1 b jE{v j}

= mu ∑
n
i=1 ai +mv ∑

m
j=1 b j

(4.2)

where E{ui}= mu and E{vi}= mv.

Thus, the sum of primary weights is required to be 1 and the sum of secondary weights is re-

quired to be 0.
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Then, matrix form of the cokriging weights can be written as

Cuu Cuv 1 0

Cvu Cvv 0 1

1T 0 0 0

0 1T 0 0





a

b

−µ1

−µ2


=



Cu0u

Cu0v

1

0


(4.3)

where a is a vector of primary variable weights, b is a vector of secondary variable weights,

µ1 and µ2 are the Lagrange parameters,

Cuu =Cov(ui,u j) is the auto-covariance of the primary variables,

Cvv =Cov(vi,v j) is the auto-covariance of the secondary variables, and

Cuv =Cov(vi,v j) is the cross-covariance between the primary and secondary variables,

Additionally, the cokriging matrix is symmetric, which means that Cuv =Cvu

To compute the vector of primary variable weights and the vector of secondary variable weights,

Eq. 4.3 can be rewritten as

a

b

−µ1

−µ2


=



Cuu Cuv 1 0

Cvu Cvv 0 1

1T 0 0 0

0 1T 0 0



−1

Cu0u

Cu0v

1

0


(4.4)

In ordinary cokriging, we assume that the sum of the weights of the primary variable is equal

to one and the sum of the weights of the secondary variable is equal to zero. A problem may arise

because the sum of the weights of the secondary variable is equal to zero. If some of the secondary

variable weights are positive, then the others must be negative. It is highly possible that the final

predicted results might be negative. To avoid this situation, standardized ordinary cokriging is

introduced in the next.
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4.3 Standardized ordinary cokriging

For standardized ordinary cokriging, we can adjust the secondary variable such that the mean of

secondary variable can be treated the same as the mean of primary variable. The function of

standardized ordinary cokriging can be written as

u0 =
n

∑
i=1

aiui +
m

∑
j=1

b j(v j−mv +mu) (4.5)

n

∑
i=1

ai +
m

∑
j=1

b j = 1 (4.6)

where mu is the estimated mean of the primary variable and mv is the estimated mean of the

secondary variable.

4.3.1 Case study

In this case study, the Blackfoot 3C-3D dataset is used to create a porosity map by the ordinary

cokriging method. In oil and gas exploration, porosity can be one of best indicators of hydrocarbon

reservoir, since it indicates the amount of pore space in the reservoir that may contain hydrocarbon.

By combining the well-log data and seismic attribute, porosity prediction by cokriging can be more

accurate than by kriging. The cokriging work-flow is displayed in Figure 4.2.

Twelve wells containing calculated porosity logs (the primary variable) are distributed over

the survey area and displayed in Figure 4.3 where the color bar indicates the value of porosity.

To create the secondary variable, three seismic slices, seismic amplitude, amplitude envelope,

and instantaneous phase, were computed from the survey using a 10 ms RMS average below the

picked channel top from the stacked P-wave seismic volume. Similarly, one more seismic slice

was extracted from the model-based acoustic impedance inversion using an arithmetic average in

a 10 ms window over the zone of interest.
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Figure 4.2: The cokriging work-flow

Figure 4.3: Well location display with porosity values

28



Figure 4.4: Data slice of acoustic impedance inversion

Figure 4.5: Cross-plot between porosity and data slice of acoustic impedance

The cokriging estimation system works best when there is a strong correlation between the

primary and secondary variables. Thus, we calculated correlation coefficients between the porosity

values and all four seismic slices. The acoustic impedance slice displayed in Figure 4.4 was picked

as the secondary variable because it showed the highest correlation (-0.65) with porosity. The

cross-plot between porosity and acoustic impedance data slice is displayed in Figure 4.5.

To compute the cokriging weights, auto-semi-variograms of porosity and aoustic impedance

data slice are computed as well as the cross-semi-variogram between porosity and acoustic impedance

data slice. All the semi-variograms are displayed in Figure 4.6. Utilizing the primary and sec-

ondary datasets to implement Eq. (4.4) to compute the cokriging weights, the final cokriged poros-
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ity map has been created and shown in Figure 4.7.

(a) Well to well variogram

(b) Seismic to seismic variogram

(c) Well to seismic variogram

Figure 4.6: Variograms
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Figure 4.7: Cokriging with porosity and inversion slice

Figure 4.8: Kriging with porosity only

Compared to the well distribution map (Figure 4.3), both the cokriged porosity map (Figure

4.7) and kriged porosity map (Figure 4.8) delineate the major trend. However, the lateral resolution

has been improved in the cokriged version through the introduction of a seismic attribute as the

secondary variable. Leave-one-out cross-validation was applied to validate the accuracy of the

cokriging and kriging results. The cokriging system shows a lower RMS error than the RMS error

of kriging in Figure 4.9.
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Figure 4.9: Leave-one-out cross validation

4.3.2 Conclusions

In this chapter, the cokriging system with a secondary variable has been implemented. The case

study showed that both the kriging and cokriging methods honor to the well-log data and are able

to display the major trend. Compared to kriging, cokriging has additional advantages. A sec-

ondary variable with useful geological information related to the primary data can enhance the

final interpretation map. In general, the primary variable has been laterally sampled sparsely, but

the secondary variable has been laterally sampled densely, which can help to estimate the primary

variable at unsampled locations. In the case study, the cokriged porosity map showed a signif-

icant improvement in lateral definition of porosity due to the geological information introduced.

Cokriging can reduce the likelihood of dependency problems caused using an imprecise primary

semi-variogram only. Additionally, leave-one-out cross-validation has been applied to both kriging

and cokrigng, the cokriging estimate variance is lower than the kriging’s estimate.

32



Chapter 5

Cokriging with multiple secondary variables

5.1 Introduction

Lithologic reservoir characterization using a combination of well-log data and seismic attributes

has improved as more advanced techniques of seismic exploration and analysis have been devel-

oped. In the traditional cokriging system, only a single secondary variable is allowed in calcula-

tion. It is beneficial to use more than one seismic attribute to support the prediction because each

attribute may have unique information about the reservoir rock properties (Guerrero et al., 1996).

Elastic parameters derived from seismic data can be utilized as distinct indicators to discriminate

the properties of oil and gas reservoirs. For instance, inverted elastic parameters and the AVO

gradient and intercept often reveal the fluid content of the reservoir (Castagna and Smith, 1994, Li

and Chen, 2008). Elastic impedance and Vp/Vs ratio extracted from prestack inversion are good

indicators to identify the thickness and lithology of the reservoir (Connolly, 1999, Duffaut et al.,

2000, Dumitrescu and Lines, 2006). Acoustic impedance and amplitude from post-stack seismic

data will also highlight the gas/oil potential of a reservoir, and can also be implemented to estimate

the sand thickness (Marfurt and Kirlin, 2001).

To optimize the secondary data, numerous methods have been proposed. Russell et al. (2002)

combined cokriging and multi-attribute transforms. As Russell et al. (2002) illustrated, the sec-

ondary variable of cokriging is an improved map generated by multi-attribute analysis. A limitation

of this method is that the multi-attribute algorithm assumes that the predicted area are highly corre-

lated to the well tie locations. Babak and Deutsch (2009) improved the cokriging model by merging

all secondary variables into a single super-secondary variable. However, this super-secondary data

was obtained under assumptions which are unpractical. For example, the linear combination of all

secondary data is assumed to generate the super data by merging all these secondary data.
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In this chapter, an approach to introduce more than one secondary variable in the cokriging

system is presented. This method reduces prior assumptions and improve the estimation. This

also means that more than one seismic attribute or elastic parameter can be integrated into the

cokriging approach. Three criteria should be considered in the secondary attribute selection for

improved cokriging: 1) The attributes should be highly correlated with expected goals i.e., the

properties of the reservoir derived from well logs; 2) The attributes should be sensitive to reservoir

properties and represent different lithologies; 3) The attributes should be independent or weakly

dependent. As an evaluation of the improved cokriging approach, the method is applied to estimate

the thickness and distribution of a lithologic reservoir.

5.2 Methodology

By modifying the derivation of rescaled ordinary cokriging (ROCK) (Goovaerts, 1998), I will

demonstrate how to derive an improved cokriging system involving more than one secondary vari-

able. The reason for using ROCK is in considering the unique variation in magnitude of the

seismic attributes, which can reduce the uncertainty. One single constraint for cokriging weights

may decrease the risk of reaching at unacceptable negative concentrations and enhance the role of

secondary information (Goovaerts, 1998).

Taking the improved ROCK method involving two secondary variables as an example, the

estimator û0 of the improved ROCK method with two secondary variables at location 0 is defined

as

û0 =
n

∑
i=1

aiui +
m

∑
j=1

b j(v j− m̃v + m̃u)+
p

∑
k=1

ck(xk− m̃x + m̃u) (5.1)

where u1, u2, . . . , un are the primary data at n locations; v1, v2, . . . , vm and x1,x2, . . . , xp are the

secondary data at m locations and p locations. a1,a2, . . . , an, b1,b2, . . . , bm, and c1, c2, . . . , cp

are cokriging weights to be determined. m̃u, m̃v, and m̃x are means of primary, first secondary, and

second secondary variables, respectively.
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One single constraint for weights can be achieved for the estimator in Eq. (5.1), which can be

expressed as

n

∑
i=1

ai +
m

∑
j=1

bi +
p

∑
k=1

ck = 1 (5.2)

Then, the estimation error can be written as

R = û0−u0 = wtZ (5.3)

where wt = (a1, a2, . . ., an, b1,b2, . . . , bm, c1, c2, . . . , cp, -1) and Zt = (u1, u2, . . . , un, v1, v2, . . . ,

vm, x1,x2, . . . , xp, u0).

Therefore, the variance of R can be expressed as

Var
{

R
}
= wtCzw

=
n

∑
i=1

n

∑
j=1

aia jCov
{

uiu j
}
+

m

∑
i=1

m

∑
j=1

bib jCov
{

viv j
}
+

p

∑
i=1

p

∑
j=1

cic jCov
{

xix j
}

+2
n

∑
i=1

m

∑
j=1

aib jCov
{

uiv j
}
+2

n

∑
i=1

p

∑
j=1

aic jCov
{

uix j
}
+2

m

∑
i=1

p

∑
j=1

bic jCov
{

vix j
}

−2
n

∑
i=1

aiCov
{

uiu0
}
−2

m

∑
i=1

biCov
{

viu0
}
−2

p

∑
i=1

ciCov
{

xiu0
}

+Cov
{

u0u0
}

(5.4)

where Cov
{

uiu j
}

is the auto-covariance between ui and u j, Cov
{

viv j
}

is the auto-covariance be-

tween vi and v j, Cov
{

xix j
}

is the auto-covariance between xi and x j, Cov
{

uiv j
}

is the cross-

covariance between ui and v j, Cov
{

uix j
}

is the cross-covariance between ui and x j, and Cov
{

vix j
}

is the cross-covariance between vi and x j.

To derive the cokriging system, the Lagrange multiplier method is used to minimize the error
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of variance, and Eq. 5.4 can be rewritten as

Var
{

R
}
= wtCzw+µ(

n

∑
i=1

ai +
m

∑
j=1

b j +
p

∑
k=1

ck−1) (5.5)

where µ is the Lagrange multiplier.

The improved ROCK system can be derived by calculating the partial derivatives of Var
{

R
}

with

respect to weights a, b , c and Lagrange multiplier µ , which can be written as

∂Var
{

R
}

∂a j
= 2

n

∑
i=1

aiCov
{

uiu j
}
+2

m

∑
i=1

biCov
{

viu j
}

+2
p

∑
i=1

ciCov
{

xiu j
}
−2Cov

{
u0u j

}
+2µ1

f or j = 1, . . . ,n

(5.6)

∂Var
{

R
}

∂b j
= 2

m

∑
i=1

biCov
{

viv j
}
+2

n

∑
i=1

aiCov
{

uiv j
}

+2
p

∑
i=1

ciCov
{

xiv j
}
−2Cov

{
u0v j

}
+2µ2

f or j = 1, . . . ,m

(5.7)

∂Var
{

R
}

∂c j
= 2

p

∑
i=1

biCov
{

xix j
}
+2

n

∑
i=1

aiCov
{

uix j
}

+2
m

∑
i=1

biCov
{

vix j
}
−2Cov

{
u0x j

}
+2µ3

f or j = 1, . . . , p

(5.8)

Base on Eq. (5.6) - Eq. (5.8), we get the final cokriging system,

n

∑
i=1

aiCov
{

uiu j
}
+

m

∑
i=1

biCov
{

viu j
}
+

p

∑
i=1

ciCov
{

xiu j
}
+µ =Cov

{
u0u j

}
f or j = 1, . . . ,n

(5.9)
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n

∑
i=1

aiCov
{

uiv j
}
+

m

∑
i=1

biCov
{

viu j
}
+

p

∑
i=1

ciCov
{

xiv j
}
+µ =Cov

{
u0v j

}
f or j = 1, . . . ,m

(5.10)

n

∑
i=1

aiCov
{

uix j
}
+

m

∑
i=1

biCov
{

viu j
}
+

p

∑
i=1

ciCov
{

xix j
}
+µ =Cov

{
u0x j

}
f or j = 1, . . . , p

(5.11)

n

∑
i=1

ai +
m

∑
j=1

bi +
p

∑
k=1

ck = 1 (5.12)

Note that Cov
{

UiVj
}

= Cov
{

ViU j
}

, Cov
{

UiX j
}

= Cov
{

XiU j
}

and Cov
{

ViX j
}

= Cov
{

XiVj
}

We

write the matrix form of Eq. (5.9) - Eq. (5.12) as,

Cuu Cvu Cxu 1

Cuv Cvv Cxv 1

Cux Cvx Cxx 1

1T 1T 1T 0





a

b

c

µ


=



Cu0u

Cu0v

Cu0x

1


(5.13)

where Cuu is the auto-covariance of the primary variable, Cvv is the auto-covariance of first sec-

ondary variable, and Cxx is the auto-covariance of the second secondary variable. Cuv is the cross-

covariance between primary and first secondary variables, Cux is the cross-covariance between

primary and second secondary variables, Cxv is the cross-covariance of two secondary variables, µ

is the Lagrange multiplier and a, b, and c are weight vectors of primary, first secondary, and second

secondary variables to be determined. Note that Cuv = Cvu, Cux = Cxu, and Cxv = Cvx.

Eq. (5.13) is hereafter referred to as the new cokriging weights function. In next section,

the improved cokriging system is applied to a real dataset and evaluated by Leave-one-out cross-

validation.
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5.3 Case study

The reservoir target is a bitumen-bearing formation which underlies a shale caprock and uncom-

formably overlies a non-reservoir clastic formation. The objective of this study is shown in Figure

5.1. The interface between the producing reservoir (good sand) and the uneconomic reservoir (bad

sand) is difficult to delineate in the stacked seismic data alone, due to the similarity of the rock

properties. The study area is located in northern Alberta and includes 11 drilled wells (Figure 5.2).

For this investigation, a window from 10 ms above the top reservoir to 10 ms below the base of

reservoir was used to produce the averaged seismic attribute slices. To demonstrate the improved

ROCK method, the work-flow designed and is displayed in Figure 5.3.

Figure 5.1: The objective of case study

Figure 5.2: Well log distribution and its thickness
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Figure 5.3: Case study work-flow

In this case study, two seismic attributes are utilized as the secondary datasets. One seismic

slice was extracted from the raw amplitude of the angle stack in Figure 5.4, and is shown in Figure

5.5. Also the cross-plot between the angle stack amplitude and formation thickness from well

logs has a calculated correlation coefficient of 0.49 (Figure 5.8a). Another secondary variable

is Vp/Vs ratio, which is shown in Figure 5.7. This attribute was extracted from the joint PP-PS

inversion result (Figure 5.6) using the same time window. Its cross-plot against thickness and with

a correlation coefficient of 0.58 is shown in Figure 5.8b.
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Figure 5.4: Seismic raw amplitude from an angle stack between 80 and 290

Figure 5.5: Seismic slice of raw amplitude from an angle stack between 80 and 290, using a

window from 10 ms above the reservoir to 10ms below the base clastic formation.
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Figure 5.6: Inverted Vp/Vs ratio volume

Figure 5.7: Slice of Vp/Vs ratio extracted from an inverted seismic volume using a window from

10ms above the top reservoir to 10ms below the base clastic formation.
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(a) Cross-plot between reservoir depth and angle stack am-

plitude

(b) Cross-plot between reservoir depth and Vp/VS ratio

Figure 5.8: Cross-plots between reservoir thickness derived from well logs and two seismic at-

tributes.

Before applying the improved ROCK algorithm, the variograms of the primary and two sec-

ondary variables have been constructed and are shown in Figure 5.9. It shows 6 variograms ob-

tained from the well-log data and two seismic attributes. Figure 5.9a, 5.9e, and 5.9f are auto-

variograms of well-log data, inversion, and seismic amplitude, respectively. The cross-variograms

are shown in Figure 5.9b, Figure 5.9c, and Figure 5.9d.

After implementing the improved ROCK method, the final predicted thickness and distribution

map is displayed in Figure 5.10. To examine the advantages of the predicted thickness map using

the improved ROCK method, we also apply the traditional ROCK method with one secondary vari-
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able using the angle stack amplitude and Vp/Vs ratio attributes separately, with all other parameters

remaining the same. The predicted thickness maps using traditional ROCK are shown in Figure

5.11 and Figure 5.12, as related to the different attributes selected.

Compared to the traditional cokriging results, the final predicted map using the modified cok-

riging approach does not show the significant differences in the areas where there are more well

distributions. However, it shows higher lateral resolution and remarkable differences in those lo-

cations where there are less well control points. For a more quantitative analysis, leave-one-out

cross-validation was employed to calculate RMS errors, which were calculated from traditional

cokriging with inversion, traditional cokriging with seismic amplitude, and the modified cokriging

system, are given by the histograms shown in Figure 5.13. Note that this approach shows a lower

RMS error than other approaches. This means that the modified cokriging system, involving two

well correlated secondary variables, gives a better estimation of the reservoir properties.

A detailed comparison of the improved and traditional ROCK methods shows that improved

ROCK with multiple attributes enhances the lateral distribution of the reservoir thickness predic-

tion. The reason is that the two secondary attributes used, data slices of angle stack amplitude and

Vp/Vs ratio, are independent of each other and can therefore indicate different reservoir character-

istics, which ensures that more geological information is introduced.
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(a) Well to Well Variogram (b) Well to Seismic Inversion Variogram

(c) Well to Seismic Amplitude (d) Seismic Amplitude to Inversion Variogram

(e) Seismic to Seismic Inversion (f) Seismic to Seismic Amplitude

Figure 5.9: Variograms

44



Figure 5.10: Predicted thickness and distribution of the reservoir formation using the improved

ROCK method, obtained in considering thickness from the wells as the primary variable, and the

angle stack amplitude and Vp/VS ratio as two secondary variables.

Figure 5.11: Predicted thickness and distribution of the reservoir formation using traditional ROCK

with only one secondary variable: angle stack amplitude.
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Figure 5.12: Predicted thickness and distribution of the reservoir formation using traditional

ROCK with only one secondary variable: Vp/VS ratio.

Figure 5.13: Leave-one-out Cross-validation

46



5.4 Conclusions

Seismic attributes and elastic parameters can be used to delineate different aspects of a reservoir.

The inclusion of more independent seismic attributes has the potential to better predict reservoir

characteristics. An improved rescaled ordinary cokriging (ROCK) system has been presented to

utilize more than one secondary variable. The method could also be extended to other cokriging

systems such as simple cokriging (SCK) and ordinary cokriging (OCK).

In this chapter, the improved ROCK method involving two seismic attributes was implemented

and used to predict the thickness and distribution of a reservoir in northern Alberta. The estimated

thickness map showed that the improved ROCK approach not only increased the accuracy of pre-

diction, but also enhanced the lateral distribution of these parameters. A statistical analysis of this

approach let us conclude that the proposed cokriging system has produced an improved lithological

prediction of the reservoir.
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Chapter 6

Block cokriging with multiple secondary attributes

6.1 Introduction

Block cokriging is employed to estimate an average value over a block area around unsampled

points rather than to estimate the value of an unsampled point. It can significantly reduce the

computational burden by constructing and solving one cokriging system for each block estimate

(Isaaks, E. H. and Srivastava R. M., 1989).

Geostatistical approaches employ spatial correlation to model the lateral variation of the reser-

voir (Ambrose et al. 2010). For example, the block cokriging method uses a block estimate to

provide the average value of a variable within a prescribed local area (Isaaks, E. H. and Srivastava

R. M., 1989). There are two reasons to use a block estimate: first, if the study area is large, there

exists a significant number of estimated grid points. Second, the zone of interest is dependent on

the average of a regionalized variable, such as total organic carbon (TOC).

Block cokriging provides an equivalent predicted value as the estimate value predicted by point

cokriging within the block area. For example, the estimate average value of the four points using

the point cokriging method in the region (Figure 6.1) yields the same estimate when using the

block estimate method.

6.2 Methodology

To take advantage of the inclusion of more seismic attributes, Xu et al. (2016) presented an ex-

tended cokriging system for point estimation which can be utilized into any of the forms of cokrig-

ing. Suppose w(x) is a point support random function for a whole area, and the true block average

48



Figure 6.1: Block estimate

in area S at location x is

wS(x0) =
1
|S|

∫
S

w(x) dx (6.1)

Similar to the extended cokriging system, the estimator of block cokriging involving two secondary

variables at location x0 in block S can be written as

w̃S(x0) =
n

∑
i=1

aiwi +
m

∑
j=1

b ju j +
p

∑
k=1

ckvk (6.2)

where a, b, and c are the weight vectors assigned to variables w, u, and v, respectively. Under the

unbiasedness condition, the weight vectors are subject to

n

∑
i=1

ai = 1 (6.3)

m

∑
j=1

b j = 0 (6.4)

p

∑
k=1

ck = 0 (6.5)

49



Therefore, the variance of the estimation error is

Var{w̃S(x0)−wS(x0)}= wtCzw

=
n

∑
i=1

n

∑
j=1

aia jCwiw j +
m

∑
i=1

m

∑
j=1

bib jCuiu j +
n

∑
i=1

n

∑
j=1

cic jCviv j

+2
n

∑
i=1

m

∑
j=1

aib jCwiu j +2
n

∑
i=1

p

∑
j=1

aic jCwiv j +2
m

∑
i=1

p

∑
j=1

aib jCuiv j

−2
n

∑
i=1

aiCwiS−2
m

∑
i=1

biCuiS−2
p

∑
i=1

ciCviS

(6.6)

with

CXi,S =
1
|S|

∫
S
Cov(Xi,x)dx (6.7)

CS,S =
1
|S|2

∫ ∫
S
Cov(x,y)dxdy (6.8)

where X ∈ {w,u,v}. Eq. (6.7) and Eq. (6.8) are the point-to-block and block-to-block covariances,

respectively, and are calculated by averaging the point-to-point covariances in the area S. In prac-

tice, the area is usually discretized into several points to achieve an adequate approximation of the

average point-to-block and the block-to-block covariances. Therefore, the number of discretizing

points in the area S is the key parameter used to obtain the point-to-block and the block-to-block

covariance matrices. It is important to use the same discretization to stabilize the cokriging system

in the calculation of the point-to-point and the block-to-block covariances.

Using the Lagrange multiplier approach and minimizing the variance of estimation error by

calculating the partial derivatives, the block cokriging weights can be written as

Cww Cwu Cwv 1 0 0

Cuw Cuu Cuv 0 1 0

Cvw Cvu Cvv 0 0 1

1T 0 0 0 0 0

0 1T 0 0 0 0

0 0 1T 0 0 0





a

b

c

−µ1

−µ2

−µ3


=



CwS

CuS

CvS

1

0

0


(6.9)
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where CXY are the point-to-point covariance matrices, which contains the spatial relationships

between primary and two secondary variables related to its subscripts, X, Y ∈ {w,u,v}. w is the

primary data, u and v are two different secondary variables. CXS are the point-to-block covariance

matrices between all given data and the estimated block, which can be calculated by Eq. (6.7).

To compute the block cokriging weights, Eq. (6.9) can be rewritten as



a

b

c

−µ1

−µ2

−µ3


=



Cww Cwu Cwv 1 0 0

Cuw Cuu Cuv 0 1 0

Cvw Cvu Cvv 0 0 1

1T 0 0 0 0 0

0 1T 0 0 0 0

0 0 1T 0 0 0



−1

CwS

CuS

CvS

1

0

0


(6.10)

The block cokriging variance can be simplified in terms of weights and is given by

Var = CSS− (aTCwS+bTCuS+ cTCvS) (6.11)

In the implementation of block cokriging, lookup covariance tables are created to contain all

the previously calculated covariance values which will be reused in calculation. The computational

burden is significantly reduced when the pre-calculated covariance tables are utilized. However,

the matrix on the left side of Eq. (6.9) can still be too large to be convenient to use in computations.

To solve that, a neighbourhood search strategy is applied in the block cokriging procedure, which

is shown in Figure 6.2.

51



Figure 6.2: The neighborhood strategy for block cokriging system. S is the estimated block. D is
the search area for block S, {w,u,v} ∈ D. r is the range of semi-variogram.

6.3 Case study

In this case study, the modified block cokriging method is applied to a producing shale gas reser-

voir in British Columbia, Canada for predicting total organic carbon (TOC). TOC is the weight

percentage of carbon in the source rock. Quantification of TOC plays a significant role for iden-

tifying potential organic shale reservoirs (Memarsadeghi, N. and Mount, D.M., 2007). Ambrose

et al. (2010) demonstrated that the quantity of TOC is related to the quantity of gas shales, as

the producible pore fluids are in the organic matter. Estimating TOC is difficult in a lateral sense

away from the borehole. This is because although TOC can be measured from core data by geo-

chemical analysis in the laboratory or calculated empirically using well-log data, it cannot be

obtained directly in the area between boreholes. Improved seismic acquisition and quantitative

seismic processing techniques, which include the amplitude with offset Amplitude Versus Offset

(AVO) technique, now offer us an opportunity to estimate TOC laterally away from the wells using

seismic data.

In order to predict TOC in a shale gas play using the improved block cokriging method, we

first need to determine which elastic parameters and seismic attributes are the best indicators of

TOC. Inverted elastic parameters, such as Vp/Vs ratio extracted from prestack inversion, have been
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shown to be associated with TOC in rock physics modelling (Qin et al., 2014). Zhu et al.,(2012)

described that an increase in the TOC generally results in a lower Vp/Vs ratio. Additionally, Neto

et al., (2016) showed that seismic amplitude can be a predictor of TOC. Loseth et al. (2011) also

discussed the relationship between the TOC profile and the seismic amplitude response. Next, we

need to consider the size of the survey. The number of estimated grid points in the survey area of

90,000 m2 is over 52,000, which could cause the prediction to become computationally expensive

if done with the traditional geostatistical approach in a point estimate manner. Therefore, the

block estimate is more suitable for this objective, as the spatial area of interest to predict TOC is

the average in a region rather than at one single point.

The study area is located in British Columbia, Canada and includes eight producing wells.

Based on previous research, we are focusing on a formation that is a shale play targeting dry gas.

TOC is considered as the primary variable, and is computed as the average value between the two

picked zones of interest extracted from each well.

Figure 6.3 shows the distribution of the wells in the survey area and the value of TOC at each

well location is indicated by the color bar. To evaluate the improved block cokriging system, two

secondary variables are required. Prestack inversion was applied to generate a number of seismic

attribute volumes for the selection of secondary variables. Then, a 13 ms window above the base

of target zone of interest was used to create the relevant data slices.

The average Vp/VS ratio over the time window shown in Figure 6.4 was selected as the first

secondary variable for the cokriging system due to its high correlation with TOC (equal to -0.69).

The second secondary variable was the amplitude of an angle stack displayed in Figure 6.5, which

has a correlation coefficient of -0.70. The relationships between TOC and two secondary variables

are analyzed by cross-plots shown on the left of Figure 6.6 and right of 6.6, respectively. Figure

6.6 shows negative relationships between both Vp/VS ratio and angle-stacked raw amplitude and

TOC.
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Figure 6.3: TOC distribution at all well locations.

Figure 6.4: The average Vp/VS ratio distribution and well locations.
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Figure 6.5: The raw amplitude of an angle stack and well locations.
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Figure 6.6: Cross-plots between two secondary variables and TOC at well locations. Left: cross–
plot of angle-stacked raw amplitude and TOC; Right: cross-plot of Vp/VS ratio and TOC.

The block cokriging method is based on the spatial variation which is quantified by the semi-

variogram. The auto semi-variograms and cross semi-variograms of the primary and two secondary

variables have been computed and displayed in Figure 6.7. To best utilize the calculated covari-

ance from previous calculations, and to avoid the repetitive computation of covariance at the same

location, pre-calculated covariance lookup tables were employed.
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(a) and (d)

(b) and (e)

(c) and (f)

Figure 6.7: Semi-variograms of two secondary variables: Vp/VS ratio and angle-stacked amplitude,

and primary varaible: TOC from well-log data, where (a) is TOC to TOC, (b) is Vp/VS to Vp/VS ,

(c) is amplitude to amplitude, (d) is TOC to Vp/VS , (e) is TOC to amplitude, and (f) is Vp/VS to

amplitude.

Each 16×24m2 block has been discretized by 384 points to obtain an adequate and stabilized

the average point-to-block and block-to-block covariances by Eq. (6.7) and Eq. (6.8). Then, the

TOC estimation in the zone of interest in the formation is found by computing the improved block
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cokriging weights using Eq. (6.10). Figure 6.8 shows the final predicted result, the estimated

average TOC values in the zone of interest using improved block cokriging. Compared to the

distribution of Vp/VS ratio and angle-stacked raw amplitude displayed in Figure 6.4 and Figure

6.5, the lateral variation of the TOC estimate in Figure 6.8 demonstrates an approximate negative

linear characteristic, which is also implied by the cross-plots shown in Figure 6.6.

Figure 6.8: The TOC estimation generated by the improved block cokriging system within
16x24m2 blocks.

Figure 6.9: The TOC estimation using the traditional block cokriging with average Vp/VS ratio.

To examine what benefits the second secondary variable brings to the improved block cokriging

system, the traditional block cokriging has been performed, which allows for only one secondary
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Figure 6.10: The TOC estimation using the traditional block cokriging with angle stacked raw
amplitude.

data within the same block size. Figure 6.9 illustrates the TOC estimation using traditional block

cokriging with the Vp/VS ratio. The left side of Figure 6.9 shows a similar distribution of TOC as

the estimation by improved block cokriging shown in Figure 6.8. However, the variation in top

right of Figure 6.9 is not consistent with the variation of Vp/VS ratio shown in Figure 6.4, which

is likely due to the size of the block used. Beyond that, compared to the TOC distribution at the

well locations (Figure 6.3), the TOC values using traditional cokriging with only Vp/VS ratio is

underestimated.

The TOC estimation using the traditional block cokriging with only the angle-stacked ampli-

tude is shown in Figure 6.10. The left side of Figure 6.10 shows a decreasing trend in TOC from

top to bottom which is not consistent with the negative linear relationship described in the cross-

plot of angle-stacked amplitude and TOC shown on the left of Figure 6.6. This possibly arises

from the instability of the point-to-block and block-to-block covariance calculations in the block

size. In addition, the instability also increases the risk of generating negative values.

Quantitative analysis of the estimated results between the traditional method with only one sec-

ondary variable and improved block cokriging involving two secondary variables is evaluated by

calculating the mean-square-error (MSE) at all well locations. The comparison of errors illustrated

in Figure 6.11 is in conformity with the qualitative analysis described previously, and demonstrates
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that the improved method has the lowest error.

Figure 6.11: Mean-square-error analysis of estimated results using traditional and improved block
cokriging at all well locations.

6.4 Conclusions

Understanding the spatial continuity of TOC provides information about the hydrocarbon storage

capability of shale gas plays. In this study, an improved block cokriging system with two secondary

variables has been presented and applied to an unconventional reservoir to predict TOC. By an-

alyzing the estimate created by traditional and improved block cokriging, the modified approach

improves the accuracy of the estimate, reduces the risk of generating negative values, and stabilizes

the block cokriging system. The use of both seismic attributes and elastic parameters can provide

more geological information about reservoir properties. We concluded that there is the potential

of superior reservoir characterization by introducing more independent seismic attributes, espe-

cially ones which are highly correlated with the primary variable. Additionally, by pre-calculating

the covariance lookup tables for the primary and secondary variables, and by applying the neigh-

bourhood search strategy, this method was able to be used in computations, especially on large

datasets.
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Chapter 7

Sequential Gaussian simulation using multi-variable cokriging

7.1 Introduction

Uncertainty analysis is a key element in reservoir property prediction, and many techniques have

been developed to perform this analysis, such as geostatistical inversion and simulation. In the

stochastic approach, sequential simulation is used to generate a series of equivalent and possible

realizations which reflect the natural variability and heterogeneity of reservoir properties. The

conditional mean and covariance are the key parameters in sequential simulation, and are usu-

ally obtained by the least-squares method. As Dermanis (1984) and Ligas and Kulczycki (2010)

illustrated, the least-squares method is equivalent to the simple geostatistical methods (simple

(co)kriging). Ordinary (co)kriging, an alternate solution to the geostatistical problem, provides

a superior approach by utilizing the local mean instead of the global mean used by least-squares or

simple (co)kriging.

Previous research work has shown that the least-squares method and simple (co)kriging method

are equivalent to conditional expectation in the posterior distribution. This indicates that the advan-

tage of ordinary approach, compared to the simple system, may also be superior to a least-squares

approach. Therefore, the extended rescaled ordinary cokriging (ROCK) method is used to imple-

ment sequential simulation instead of the least-squares method, which means that the posterior

mean and variance of sequential simulation are computed by ROCK. Finally, this approach is ap-

plied to Black-foot 3C-3D dataset for porosity simulation.
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7.2 Methodology

Any estimation, interpolation, projection or transformation problem, based on a given data d, can

be treated as the inversion problem in which we solve for the model parameters that generates the

data using the equation (Claerbout,1992):

d = Gm (7.1)

where d is the observed data, m represents the model parameters, and G is a projection operator.

Therefore, the key is to find the best-fit model m for the operator G using the observed data d. The

classical approach to solve Eq. (7.1) is to use the unbiased minimum error variance criteria between

the data and model, which turns the above problem into least-squares prediction. A unique, best-fit

estimate by the least-squares method can be described as the weighted combination of the prior

information where three criteria are met: linearity, unbiasedness, and minimum error variance.

The aim is to compute a set of weights satisfying these three criteria, which turns the estimation into

the simple geostatistical problem. In fact, least-squares prediction is equivalent to the interpolated

result using a simple geostatistical system, such as a simple kriging or simple cokriging (Dermanis,

1984; Ligas and Kulczycki, 2010). Tarantola (2005) demonstrated that the least-squares method

(Eq. 7.1) can also be described using the posterior Gaussian probability density given by:

P(m|d) = kexp
[
−1

2
(m−µµµm|d)

T
ΣΣΣ
−1
m|d(m−µµµm|d)

]
(7.2)

Where k is a scale factor and the conditional mean is

µµµm|d = µµµm +(GCm)
T (GCmGT +Cd)

−1(d−µµµd) (7.3)

the conditional covariance is

ΣΣΣm|d = Cm−CmGT (GCmGT +Cd)
−1(d−µµµd) (7.4)

where, µµµm and µµµd are the mean vectors for model and given data respectively, Cm and Cd are

the model and data covariance matrices. Here, the conditional mean µµµm|d and covariance ΣΣΣm|d are

identical to the simple kriging or simple cokriging mean and covariance.
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Tarantola (2005) and Hansen et al. (2006) also showed that posterior Gaussian probability den-

sity distribution can be adopted for N given datasets. Assume there are known model parameters

ΦΦΦ0(xi) at m locations (xi ∈ {x1,x2, . . . ,xm}) and two given datasets A and I. Based on Eq. (7.1),

the projection between model parameters ( m = ΦΦΦ) and two given datasets can be written as

d =


ΦΦΦ0

AAA

III

 ,Cd =


CΦΦΦΦΦΦ CΦΦΦAAA CΦΦΦIII

CAΦΦΦ CAAAAAA CAAAIII

CIΦΦΦ CIIIAAA CIIIIII

 ,µµµ0 =


µµµΦΦΦ

µµµAAA

µµµ III

 (7.5)

The equivalent extended simple cokriging system (Xu et al., 2015) can be written as
CΦΦΦΦΦΦ CΦΦΦAAA CΦΦΦIII

CAAAΦΦΦ CAAAAAA CAAAIII

CIIIΦΦΦ CIIIAAA CIIIIII




λλλ 1

λλλ 2

λλλ 3

=


CΦΦΦ0ΦΦΦ

CΦΦΦ0AAA

CΦΦΦ0III

 (7.6)

Solving the problem involves the following steps:

1. Sort the estimated locations into a random sequence {x1,x2, . . . ,xn}.

2. Visit the grid point x j according to the path generated in step 1.

3. Calculate the conditional mean and covariance at visited location x j based on known

ΦΦΦ0 and pre-simulated model parameters ΦΦΦ(x1, ...,x j−1) and two given datasets (A

and I), by performing least-squares or simple geostatistical methods.

4. Build the posterior probability distribution P
{

ΦΦΦ(x j)|ΦΦΦ0,A,I,ΦΦΦ(x1, ...,x j−1)
}

, and

draw a random value. Then, put this simulated value at location x j into the known

dataset.
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5. Move to the next location x j+1 in the sequence, and repeat step 2-4 until the last

grid point in the sequence is encountered.

The procedure proposed to implement sequential Gaussian simulation (SGS) is inspired by the

extended rescaled ordinary cokriging system as described by Xu et al. (2016).



CΦΦΦΦΦΦ CΦΦΦAAA CΦΦΦIII 1

CAAAΦΦΦ CAAAAAA CAAAIII 1

CIIIΦΦΦ CIIIAAA CIIIIII 1

1T 1T 1T 0





λλλ 1

λλλ 2

λλλ 3

µ


=



CΦΦΦ0ΦΦΦ

CΦΦΦ0AAA

CΦΦΦ0III

1


(7.7)

Detailed comparisons between simple, ordinary, and rescaled ordinary methods for kriging and

cokriging were discussed by Goovaerts (1998). He concluded that, instead of a stationary mean in

a simple cokriging system, the rescaled ordinary cokriging (ROCK) method utilizes the estimated

local mean. Furthermore, the unbiasedness constraint applied to the weight vector reduces the

risk of producing unacceptable estimates, such as singular or negative values (Goovaerts, 1998;

Xu et al., 2016). In this chapter, rather than using a least-squares or simple (co)kriging system,

performing SGS with the extended ROCK system (SGS-extended ROCK) to obtain the conditional

mean and covariance brought practical benefits.

In the implementation of SGS, the covariance matrix becomes larger and larger as the number

of iterations increases, which makes the approach time consuming and potentially incalculable.

However, as shown by Deutsch et al. (1998), data far beyond the range of the semi-variogram has

little contribution to the mean and covariance of the posterior probability distribution. Therefore,

by omitting data beyond the range of the semi-variogram, the covariance matrix of the extended

ROCK method can be made computationally manageable. To best utilize the calculated covariance

from previous iterations, and to avoid the repetitive computation of covariance at the same location,

pre-calculated covariance lookup tables are employed.
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7.3 Case study

In this study, SGS-extended ROCK will be applied to the Black-foot 3C-3D dataset to simulate

porosity. The well distribution with porosity values is displayed in Figure 7.1. Two data slices, the

data slice of RMS amplitude (Figure 7.2) and the data slice of acoustic impedance inversion of the

seismic data (Figure 7.3), were selected as the two secondary datasets for this improved method.

This was due to the high correlation between porosity and these two seismic attributes.

Figure 7.1: Well distribution with porosity values
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Figure 7.2: Data slice of RMS amplitude

Figure 7.3: Data slice of acoustic impedance inversion
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SGS used the procedures illustrated previously, except that conditional mean and variance cal-

culations were done using an extended ROCK system. One hundred realizations were generated,

six of which are shown in Figure 7.4.

(a) Simulation 1 (b) Simulation 2

(c) Simulation 3 (d) Simulation 4

(e) Simulation 5 (f) Simulation 6

Figure 7.4: Simulations

All the realizations shown in Figure 7.4 correctly delineate the major porosity trends compared
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to the “model parameters” (Figure 7.1). This reinforces the validity of the sequential Gaussian

simulation with the extended rescaled cokriging system (SGS-extended ROCK). The mean map of

all realizations is shown in Figure 7.5. An additional benefit of the SGS method is the generation

of probability map. For instance, Figure 7.6 shows the probability of porosity greater than 10%.

To analyze the influence of extended ROCK system, the SGS with least-squares method(SGS-LS)

was also implemented. The difference between SGS-extended ROCK and SGS-LS is shown in

Figure 7.7. The error map verifies the observation made by Goovaerts(1998) that the departures of

the estimated primary and all secondary local means from stationary means result in the differences

between simple cokriging and rescaled ordinary cokriging. The related error difference between

extended simple cokriging(SCK) and extended rescaled ordinary cokriging (ROCK) at a particular

location x, can be written as

ZROCK(x)−ZSCK(x) =
[
λ

SCK
1 +λ

SCK
2 +λ

SCK
3

]
[mROCK(x)−m1] (7.8)

where ZROCK(x) and ZSCK(x) denote estimations calculated from extended ROCK and SCK

systems. m1 and mROCK(x) represent the stationary mean and local mean, respectively. Eq. (7.8)

indicates that the extended ROCK estimates are higher than extended SCK (or LS) estimates where

the local mean is higher than the global mean, and vice versa.

Figure 7.5: Mean map of all realizations
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Figure 7.6: Probability map ( φ > 10%)

Figure 7.7: Error = SGS-ROCK - SGS-LS
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Figure 7.8 and Figure 7.9 show semi-variograms of 30 realizations generated by SGS-extended

ROCK and SGS-LS. As discussed previously, SGS-extended ROCK produced a series of realiza-

tions honoring the prior information. However, realizations created by SGS-LS deviate from the

prior information due to the significant differences of magnitude between primary and secondary

variables.

Figure 7.8: Variograms of realizations using SGS-ROCK

Figure 7.9: Variograms of realizations using SGS-LS
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7.4 Conclusions

Sequential simulation is an effective tool for generating independent realizations for a second order

stationary random field. In this study, a sequential simulation approach has been presented, which

was implemented by the extended rescaled ordinary cokriging (ROCK) system. By pre-calculating

the covariance lookup tables for primary and secondary datasets, and restricting the neighbourhood

search method to be limited to the covariance matrix size, the sequential simulation with extended

ROCK was made computationally efficient. Furthermore, compared to the least-squares approach,

the constraint applied to the weights led to a more adaptable and accurate version of sequential

simulation.

71



Chapter 8

Conclusions and future work

8.1 Conclusions

Geostatistical techniques, such as kriging, cokriging, and sequential simulation, have been used

in this thesis to analyse and characterize reservoir properties using a spatial correlation model.

These approaches not only predict interpolated values at the unsampled locations, but also provide

a measure of uncertainty for predicted values. To summarize this thesis,

1. The kriging method was reviewed in Chapter 2. Kriging uses a weighted average of

neighbouring samples to predict the value at a given location. The kriging weights

are computed by semi-variogram, which defines the spatial relationship in all the

sample data points over the estimate area. The advantages and disadvantages were

discussed at the end of the chapter.

2. In Chapter 3, a testing method, called cross-validation, was demonstrated. Cross-

validation is used to evaluate how generalized the model is to a new independent

dataset. After fitting a model by training dataset(s), performance of a geostatistical

models can be measured by validation dataset(s).

3. In Chapter 4, the cokriging method was compared to the kriging method. Cokriging

is used to take advantage of the covariance between primary variable (well-log data

lateral sampled sparsely) and secondary variable (seismic attribute lateral sampled

densely). Both kriging and cokriging methods were applied to Black-foot 3C-3D

dataset to predict porosity. Porosity can be one of the most difficult properties

to estimate in spatial reservoir characterization because it is only sampled at well

locations. Compared to the kriged map, the cokriged map was able to capture highly
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detailed variations over the estimate area. In a performance evaluation between

kriging and cokriging using the cross-validation technique, cokriging demonstrated

a lower RMS error.

4. Based on the traditional cokriging method, a modified cokriging system which com-

bines well logs and multiple secondary attributes was presented in Chapter 5. This

technique has the potential to decrease the uncertainty and improve the definition

of the predicted map. It was applied to predict a distribution and thickness map of a

channel system. The results confirmed that, when compared to the traditional cok-

riging method, the modified cokriging system enhanced the lateral resolution of the

channel and reduced the uncertainty of prediction due to the use of more seismic

attributes.

5. In Chapter 6, an improved block cokriging system was introduced and applied to a

producing shale gas reservoir for predicting the spatial distribution of total organic

carbon (TOC). By analyzing the estimate created by traditional and improved block

cokriging methods, this approach improved the accuracy of the estimate, reduces

the risk of generating negative values, and stabilized the block cokriging system.

6. As deterministic methods, kriging and cokriging can only provide one predicted re-

sult, which has trouble preserving the natural variability of reservoir properties. The

sequential simulation technique, implemented by an extended cokriging method,

was presented. The conditional mean and variance in the posterior distribution

were obtained using the extended cokriging system. The advantage is validated by

review of the estimated error map. This indicates that sequential simulation using

the extended geostatistics method can produce an more accurate map, especially

when dealing with the data point that has the dramatical value difference from well

control points.
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8.2 Future work

There is a lot of future work that could make this thesis more complete. Here, I only highlight two

key items:

1. Build anisotropic semi-variogram models that can reflect directionality in the depo-

sitional setting.

2. Use a neural network approach (Russell, 2004) that may offer an opportunity for the

non-linear relationship between the primary variable and the secondary variables.
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