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Abstract 

Seismic data, comprising both passively and actively recorded data, have long been used for 

resource evaluation and geohazard assessments.  Unconventional resource extraction, such as 

Albertaôs Duvernay play, requires a multifaceted approach to optimize reservoir development 

and to mitigate geohazards such as induced seismicity.  Frequently, hydraulic fracture 

stimulation programs do not go as planned; fractures occur out of zone, depart from the predicted 

models, and, in some cases, induce felt seismic events (induced by hydraulic fracturing 

operations).  From the Fox Creek, Alberta study area are well log data, multicomponent seismic 

reflection data, and microseismic data recorded from a permanent near-surface passive recording 

array.  For this study, an industry partner provided two multicomponent seismic reflection 

surveys, as well as two co-located passive microseismic surveys.  The Microseismic Industry 

Consortium (MIC) supplied microseismic data from the Tony Creek dual microseismic 

experiment (ToC2ME); an anonymous industry contributor contributed a second passive survey.  

Technologies developed in this thesis enable more accurate positioning of microseismic 

hypocenters by incorporating seismic reflection data.  Signal-processing techniques used in 

seismic reflection processing are employed in this thesis to enhance the detection quality and 

quality of induced seismic events.  Structural interpretation provides a framework of vital 

information to map and understand the relationship between geological structure and induced 

seismic events.  Constraints obtained from full -waveform inversion provide detailed information 

about the properties of the Duvernay Formation itself, such as brittle and ductile facies.  

Accurate microseismic hypocenter determination in the context of seismic analysis identifies 

which structural elements and reservoir facies control the direction and size of induced fractures 

and which faults may be responsible for induced seismicity.  Hypocenters are accurately located 
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and plotted in depth and are associated with faults mapped from the reflected seismic.  This 

analysis highlights what geological conditions, faults, lithology, and structure are dominant 

factors with respect to hydraulic fracture propagation and induced seismicity.  The results of this 

research will aid in the design of hydraulic fracture completion programs and geohazard 

(induced seismic event) mitigation. 
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Preface 

The research presented here is conducted under the supervision of Dr. D. Lawton, Dr. 

David Eaton, and Dr. L. Lines at the University of Calgary within the Consortium for Research 

in Elastic Wave Exploration Seismology (CREWES) research group, as well as Dr. David W. 

Eaton within the MIC.  The PhD thesis is composed in a manuscript-based format based on two 

published papers, two expanded abstracts, and one paper pending publication.  I am the primary 

author of these five publications.  I am the first author of the papers in Chapters 2 and 3, 

published in the journals Interpretation and The Leading Edge, respectively.  The research 

compiled in Chapter 6 is in preparation for peer review, with the intent of submitting it to 

Interpretation for publication. 

Chapter 2 is published as follows: Weir, R.M., D.W Eaton, L.R Lines, D.C Lawton, and 

E Ekpo, 2018. Inversion and interpretation of seismic-derived rock properties in the Duvernay 

play. Interpretation, 6, SE1-SE141.  The seismic reflection data used are three-component, three-

dimensional (3D/3C) seismic data provided by industry and are co-located with a passive seismic 

array active before, during, and after hydraulic fracture stimulation.  The seismic analysis 

consists of structural mapping followed by joint inversion to calculate lithological properties 

within the Duvernay Formation. 

Chapter 3 is published as follows: Weir, R., L R. . Lines, D. Lawton, T Eyre, D Eaton, 

ñApplication of structural interpretation and simultaneous inversion and reservoir 

characterization of the Duvernay Formation, Fox Creek, Alberta, 2018, The Leading Edge, 

Volume 3 38, Issue 2, February 2019.ò  The seismic reflection data are 3D/3C seismic data and 

 

1 SEG Interpretation, TLE, and Expanded abstracts  open access policy:ò Authors may reuse all or part of their 

papers published with SEG in a thesis or dissertation that authors write and are required to submit to satisfy 

criteria of degree-granting institutions.ò https://seg.org/Publications/Policies-and-Permissions/Open-Access-Policy 

https://seg.org/Publications/Policies-and-Permissions/Open-Access-Policy
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are co-located with a second passive seismic array active during fracture stimulation.  The 

interpretation methodology used in Chapter 3 is similar to that used for Chapter 2, but there are 

significant geological differences.  T. Eyre (2019) incorporated this work into a Science 

Advances publication, whereby aseismic creep caused by hydraulic fracture stimulation was 

proposed as an earthquake-triggering mechanism.  

Chapter 4 is published as an expanded abstract for the 2019 GeoConvention: Weir, R, L. 

Lines, D. Lawton, D. Eaton, A Poulin. Can continuously recorded seismic data be improved with 

signal processing?  This research came about as a result of experience I have in seismic signal 

processing for seismic reflection data, where signal processing is routinely applied to reduce 

noise and enhance the signal.  The seismic detection software Repeating Earthquake Detector, 

Python (REDPy), run by Rebecca Salvage on the signal-processed data, uses the same 

parameters as used on the raw microseismic data.  With the microseismic data used here, all of 

the seismic event detection algorithms are initially applied on the raw data.  The results of using 

signal processing are shown here, showing significant improvement in the quality and quantity of 

microseismic events before and after processing.  Given the sheer data volume of detected 

seismic events, the seismic event detection is not expected to be ready for final publication until 

the summer of 2020. 

 Chapter 5 is a new method for hypocenter depth determination derived as a result of 

collaboration among myself, D. Eaton., A. Poulin, and N. Igonin.  The collaboration is the result 

of a discussion regarding the difficulties in determining hypocenter depth from passive seismic 

data.  Current depth-determination methods use one-dimensional (1D) velocity models that do 

not account for anisotropy or variations in structure These 1-D methods often produce erroneous 

depth results, sometimes clustering seismic events around velocity boundaries in the 1D model.  
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After working on a multicomponent data set that was co-located with the passive seismic array 

(ToC2ME),  I suggested using the compressional (P)-wave and shear (S)-wave velocity data 

derived from the multicomponent P-wave reflection and converted S-wave reflection registration 

instead of a 1D velocity model.  A completely new and more accurate method to depth-convert 

passive seismic events comes from collaboration of this idea.  A. Poulin developed the code, and 

I provided the depth-converted data, as well as a method for reconciling the reflection and 

passive seismic data.  This work is published as an expanded Society of Exploration 

Geophysicists (SEG) abstract in the 2018 convention archives and was presented at the 2018 

SEG conference in Houston, Texas: Ronald Weir, A. Poulin, Nadine Igonin, David W. Eaton, L. 

Lines, D. Lawton, (2018). ñFocal-time Method.ò  It is also published as a peer-reviewed paper in 

Geophysics, with A. Poulin as the primary author and myself as the second author.  This method 

for focal-time estimation can be deployed, in a more general sense, in areas where reflection data 

are available, such as areas prone to naturally occurring earthquakes. 

Chapter 6 is written with the intent of submission for publication in early 2020.  It is the 

field development application of the new methods developed in earlier chapters of the thesis.  

This chapter integrates the work from Chapters 2, 3, and 5, showing a method whereby 

microseismic data and passive seismic data are integrated into a comprehensive seismic 

interpretation.  Subtle fault features are observed in the seismic mapping between major strike-

slip faults originating within the Precambrian basement.  A geological model is proposed to 

explain these observations based on the concept of transcurrent faulting.  This model provides a 

viable explanation for both the nature of the observed hydraulic fracture patterns and the 

associated induced earthquakes occurring in the shallower horizons.  Incorporating these results 
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into future field development can reduce risk, increase the efficiency of well design, and reduce 

capital requirements for future development of the Duvernay Formation. 
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Chapter 1 

Introduction  

1.0 Objectives 

 The use of reflection seismic data has a significant impact on the economics of oil and 

gas extraction as a means of risk reduction.  In an exploration role, it can high-grade structures, 

define faults and traps, and is used as a direct hydrocarbon detection tool.  In a development role, 

it is used to define areas suitable for development in a given basin. Reflection seismic is used as 

a structural guide to direct the orientation of horizontal well bores.   The use of three dimensional 

multicomponent data, 3-D/3-C, enables the extraction of petrophysical attributes relevant to field 

development.   3-D/3-C seismic data is a powerful tool in the identification of faults, contributing 

a structural analysis to field development. 

 Passive seismic data (microseismic) is used to monitor seismic activity during the course 

of a hydraulic fracture stimulation operation.  It determines the position and depth of the induced 

seismic events2, as well as monitors undesirable  seismic  events such as large magnitude (felt) 

earthquakes, or fractures occurring above and below the treatment zone.   Microseismic 

monitoring serves to provide information with respect to hydrocarbon development in adjoining 

areas. 

 

2 In this thesis, induced seismic events are defined to be anthropomorphic in origin, the result of human activity  
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In the compilation of this thesis, methods were developed to combine these two aspects 

of seismic analysis.  These include a method to combine the passive and active data to derive an 

accurate depth for induced seismic events, and a method to interpret the results using both types 

of seismic data.  In addition, data processing methods commonly applied to reflection are applied 

to passive seismic, significantly increasing the quantity and quality of  identified passive seismic 

events. 

The data presented in this  thesis is centered in an active hydrocarbon exploitation 

project, near Fox Creek, Alberta  This thesis  presents results acquired in an active hydrocarbon 

exploitation area,   combining  reflection seismic, microseismic, signal processing and 3-D 

visualization.  An explanation for the mechanism fracture propagation and induced (felt) 

seismicity in terms of deep seated basement faults and Riedel3 shear faulting (Davis, et al., 

2000).   The analysis presents  a significant departure from previous reservoir fracture models, 

where the reservoir is assumed to be homogeneous and SHmax dominates the fracture 

propagation direction;  that the reservoir  acts as a homogeneous block of material, and SHmax is 

the dominant feature in fracture propagation.  Here, I show that the large induced seismic (felt) 

events are reactivated basement faults, and that the fracture propagation is dominated by re-

activating  pre-existing faulting such as Riedel shear zones near strike-slip faults.   . 

 

3  Riedel and transcurrent faulting refer to the oblique shear deformation that occur as a result of strike-slip 

movement, Davis et al. 2000. 
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1.1 Overview 

Hydraulic fracturing is used extensively in the development of unconventional reservoirs.  

The hydraulic fracturing method typically starts with drilling a well vertically to the target 

formation and then turning the wellbore horizontally through the tight, hydrocarbon-bearing 

(King, 2011).  The horizontal section of the wellbore is perforated over discrete intervals and is 

injected with water, chemicals, and proppant in what is called hydraulic fracture stimulation or 

ñfracking.ò  The combination of high-pressure water, chemicals, and proppant (usually sand) 

opens up microfractures within the reservoir (CAPP, Hydraulic Fracturing, 2019).  The function 

of the proppant is to hold the newly formed fractures open; otherwise, the stimulated reservoir 

rock would collapse once the pressure is reduced during flowback.  Along with creating new 

fractures, fracture stimulation connects existing fracture networks within the reservoir, enabling 

oil and gas to flow from tight reservoirs. 

The Duvernay Formation is the subject of study in this thesis, with the results of two 

horizontal hydraulic fracture treatment programs evaluated.  The Duvernay Formation  is a 

hydrocarbon play in active development in western Alberta, utilizing horizontal drilling, hydraulic 

fracture stimulation, and microseismic monitoring. This unconventional play is comprised of a 

bituminous / argillaceous carbonate deposited adjacent to several large Leduc reef complexes The 

Duvernay has an effective porosity of 6 - 7 % and an average total organic carbon (TOC) content 

of up to 4.5% (Chopra, 2017).   The Duvernay was deposited as basin fill sediments between the 

stratigraphically equivalent Leduc Formation platform and reefs.  The sediments, consistent of fine 

grained organic rich sediments, varying in lithology as described by Knapp (2017), and Dunn 
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(2012). . It is correlative with the lower Leduc Formation and is believed to be the source rock for 

the conventional  Leduc, Nisku, and Wabamun oil pools in Alberta  (Dunn 2012).  During the 

Devonian, the growth of Leduc reefs was terminated by sea level rise, during which the reef-

building organisms were ultimately unable to keep up with the rising sea level and drowned. The 

Leduc and Duvernay Formations are both overlain by the quartz-rich Ireton Formation, which 

forms a cap rock and seal for the oil reservoirs.  Figure 1.1 shows the location of the study area 

within Alberta, the treatment well locations with the passive recording array, the downhole 

recording configuration, and  generalized Devonian stratigraphic column.  Within the 

stratragraphic column, the Duvernay is colored red, the Leduc Formation  and Gilwood member 

are highlighted in yellow.  The Gilwood member is a significant seismic marker, a channel incised 

into the Muskeg formation.   The mapping of the Gilwood channel aids greatly in recognizing the 

structural evolution of the environment affecting the Duvernay Formation deposition and 

diagenesis. 

The depositional environment of the Duvernay Formation varied enormously depending 

on where it was situated with respect to the Leduc reef.  Factors which affected the deposition 

were tides, climate, storms and sea level changes. Inter-reef areas were protected from waves and 

tides, so that sediments were deposited in a low energy environment.   In the subsurface, five 

lithofacies have been identified from cores (Dunn and Schmidt, 2012): argillaceous mudstones, 

bioturbated limestones, organic rich siliceous mudstones, siliceous organic-rich mudstone and 

mixed siliceous mudstones.   
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Figure 1.1.  A location map highlighting the study area within the province of Alberta.  (a.) The 

area is near Fox Creek, Alberta, (b) displays the horizontal well treatment program with the 

microseismic recording array.  (c) is the downhole recording configuration, and (d) is the 

generalized stratigraphic column for the Devonian age in Alberta.  The formations of interest 

highlighted in red (Duvernay) and yellow (Leduc).  (adapted from Core Labs Stratigraphic 

Correlation Chart 
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Seismic information plays an integral part in the development of unconventional 

reservoirs such as the Duvernay Formation in Alberta, Canada.  Two types of seismic data are 

analyzed in this thesis: seismic reflection data, acquired using active seismic dynamite near the 

surface, and passive seismic data, recorded continuously to ñlistenò for seismic events such as 

induced earthquakes occurring at reservoir depth (microseismic events).  For wellbore 

placement, seismic reflections are converted to depth and are used to determine well placement 

and trajectory.  Emerging technologies such as simultaneous inversion, structural mapping, and 

microseismic analysis are routinely used as key components in deriving a complete reservoir 

picture (Chopra et al., 2017; Weir et al., 2018).  These inversion methods deliver lithologic 

properties such as P-wave velocity, S-wave velocity, and density, from which petrophysical 

properties such as Youngôs Modulus, Poissonôs Ratio, and Brittleness index are calculated.   

Horizontal well treatment programs (hydraulic fracture stimulation) are monitored by a 

passive seismic recording array situated on the near surface (Eaton, 2018).  This array records 

seismic events such as perforation shots background seismicity, induced fractures, and induced 

earthquakes.  Data recording occurs before, during, and after the well treatment program.  The 

passive seismic recording is processed to catalog seismic events and to determine the epicenter 

(surface projection) and hypocenter (seismic event depth).  Analyzing the depth and pattern of 

the microseismic fracture propagation serves as a method to characterize the reservoir by 

interpreting the fault patterns.  The lateral extent of the fracture stimulation is tracked, and 

insights are obtained as to the mechanism by which fractures propagate.  A challenge exists in 

determining the optimal method to develop a reservoir by well placement while avoiding 
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geohazards such as induced seismicity.  Technologies developed and discussed in this thesis are 

used to advance reservoir characterization and include simultaneous inversion (Weir et al., 

2018), a new method to determine hypocenter depth (Poulin et al, 2019) , improvements in signal 

processing (Weir et al., 2019), and a method to integrate passive seismic data with reflection data 

to provide a comprehensive geological interpretation. 

 1.11 Poststack inversion 

The concept of seismic inversion dates back to R. Lindseth and the Seislog® inversion 

(Lindseth, 1979).  Seismic reflection data are inherently band-limited (Lines and Newrick, 2004), 

so the ability to recover subsurface impedance values is data-limited.  As part of normal seismic 

processing, seismic data are stacked to approximate a zero-offset reflection and to reduce noise 

(Margrave, 2005).   Stacked seismic data processing makes  the assumption that all the seismic 

traces that focus on a common midpoint can be summed to increase the signal to noise ratio, and 

form a reflection seismic section that assumes all raypaths are vertical, and hence zero incidence.  

The seismic data used for poststack inversion is the common midpoint stack, where the 

individual traces that focus on a common midpoint are summed together, or ñstacked.ô Sonic 

well log data are used to add a low-frequency (0 to 12 Hz) component to seismic data, resulting 

in a more accurate subsurface impedance profile.  The resulting inversion is a representation of 

the acoustic impedance profile in the subsurface.  By adding the low-frequency component, a 

more accurate subsurface acoustic impedance is defined.  By using the sonic log, as shown in 

Figure 1.2, the low-frequency component of the seismic data is recovered.  The sonic log (or 

sonic/density logs) is resampled, tied to the reflection data by means of a synthetic seismogram.  
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The blocked log is perturbed at each and every trace in the survey until there is a match.  The 

resulting output is the acoustic impedance inversion.  A limitation of this type of inversion is that 

it is a combined sonic and density response and cannot isolate density or velocity effects.  An 

anomaly caused by a coal bed may be indistinguishable from a gas sand.  Poststack inversion is 

also subject to the same resolution issues with respect to the thickness of the target interval at 

one-fourth to one-eighth of a wavelength (Lines and Newrick, 2004, Widess, 1973).  

Figure 1.2.  A simplified model-based inversion workflow.  (a) The original sonic or acoustic 

impedance log.  (b) The sonic log block model derived from the sonic log.  (c) The reflection 

coefficient generated from the block model.  (c) Where the synthetic data are tied to the seismic 

survey.  (d) An arbitrary trace from the survey.  (e) The block model from (b) perturbed to match 

the data.  In this example, (e) is the final inversion output.  (f) The layer that is modified to match 

the seismic trace (blue arrow). 
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1.12 Amplitude versus offset 

 Amplitude versus offset (AVO) is a technique where nonzero incidence seismic 

reflection data is used to determine the physical properties of the subsurface.  With AVO 

analysis, the amplitude behavior is investigated as a function of source receiver offset or 

incidence angle, the traces that were stacked for the zero-offset seismic section are investigated 

individually for  their angle dependence.  AVO came about as a recognition of the offset-

dependent reflectivity within seismic reflection data.  Initially, AVO analysis was used as a 

method for direct gas detection in the subsurface (Ostrander, 1984), where gas sands were 

observed to have a demonstrable increase in amplitude with offset.  It became a routine practice 

to distinguish strong anomalies generated by low-impedance events such as coal beds from gas 

zones (Lines and Newrick, 2004).  Hydrocarbon maturity windows for early use of AVO 

analysis were described by Chiburis et al. (1993), where prestack seismic data were used as a 

direct hydrocarbon indicator.  Equations 1.1 and 1.2 were used based on petrophysical 

parameters to generate forward models and predict the offset reflection dependence of reservoirs 

as a function of fluid content.  Using AVO, the interpreter was able to distinguish lithology 

changes from fluid changes; some of the observed ñbright spotsò in the stack data were 

confirmed to be generated by the presence of hydrocarbons and to be distinguishable from 

lithology-generated anomalies such as coal beds.  .  This amplitude-versus-angle (AVA ) strategy 

is used as an interpretation tool to determine fluid content or rock properties.  Figure 1.3 is a 

diagram of how an incident P-wave reflects a P-wave and converts to S-waves. 
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Aki and Richards (2002) discussed the following relationships for energy partitioning at 

an interface.  P-wave to P-wave reflection (P-P) and P-wave to S-wave reflection (P-S) can be 

expressed as a function of incidence angle or, more conveniently, as a function of —, where — is 

the incidence angle: 

 

Figure 1.3.  A display of an incident P-wave reflecting, refracting, and partially converting to an 

S-wave.  The reflectivity is a function of the incidence angle and is determined by contrasts from 

VP, VS, and ɟ (P-wave velocity, S-wave velocity, and density, respectfully). ɗ is the incidence, 

reflection, and refracted P-wave angle, and ɣ is the S-wave reflected and refracted angle. 
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ɾ Ȣ  Values for ὠ and ὠ (S- and P-wave velocity, respectfully) are generally taken as the 

average value over the region of interest.  
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Fattiôs version of the Aki-Richards equation is (Fatti et al., 1994): 
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These equations form the basis to estimate P-P and P-S derived from sonic, shear, and density 

logs.  

 The choice for using a linearized inversion method (CGG Geoview) is based on the 

following considerations: 

-At present, the Zoeppritz (Zoeppritz, 1919) equations are very complex, and are 

difficult to implement for practical applications (Zhang et al., 2016), linear 

approximations are sufficient given that the analysis is for incident angles well 
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below critical, and the general band limited nature of our reflection seismic data is 

well suited to a model based ñblockedò inversion.. 

-Geoview Commercial software is configured to processes large prestack data 

volumes, .uses advanced graphics, and has the I/O capability to pass data to and 

from other platforms. 

-Computational efficiency, non-linear methods can be  computationally  

expensive, and are not readily available for 3-D/3-C datasets. 

-All of the offsets for inversion were intentionally limited to a maximum  incident 

angle of 38°, linear approximations are quite effective in our application, the 

objective to image relative differences in the Duvernay Formation in the 

calculated impedance volumes. 

1.13  Simultaneous and joint inversion 

Combining impedance inversion with AVO results in a process called simultaneous 

inversion, where prestack seismic data are combined with subsurface log data, with the P and S 

wave, and density are calculated (Hampson and Russell, 2005).  The converted wave response 

depends only on the in shear (æVs) contrasts and density (æɟ), which is much simpler than the P-

P response, where the response is dependent on æVp, æVs and æɟ (Gray, 2003).  Synthetic data 

as well as converted wave data from Long Lake, Alberta as examples.  Without the shear wave 

data, the it is difficult to resolve accurate  density values.  Inversion tests were  also performed  

using synthetic and  VSP data (Mahmoudian and Margrave, 2007).  The  shear wave data  

contributed a greater portion to the density value than the compressional velocity.  The Blackfoot 
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field study (synthetic data) and a field study in the Red Deer area on a walkout VSP were 

processed as comparison examples between different inversion algorithms.  AVO inversion, by 

its very nature, requires the use of a damped singular value decomposition to stabilize the AVO 

inversion.  The density solution is very sensitive to noise in the AVO inversion,   hence the need 

for a stability factor (thereby reducing resolution).   In the simplest of terms, the converted wave 

data provides a direct shear wave response from the subsurface.   This data is independent of the 

P wave reflected and adds additional information to the inversion.  Given that the objective of 

the inversions presented here is to derive petrophysical properties such as Youngôs Modulus, and 

Poissonôsô Ratio (calculated using Vp, Vs and ɟ), an accurate density estimate is crucial.   

Ideally in a 3-D seismic acquisition program the source points (dynamite shots) and 

receivers (geophones) are distributed evenly, with an even distribution of near and offsets for 

each common midpoint.  The surface projection of  the common mid-point is referred to as a 

ñbin,ò the objective of seismic processing is to ensure all of the bins are equivalent, with an even 

distribution of offsets.  In the real world, there are surface obstructions, roads, railways, wells, 

and so on which  make it all but impossible to even out the bin distribution by field acquisition 

alone.  The process of interpolation (Trad, 2005) fills in the missing acquisition  data and 

normalizes the AVO trace distribution for each surface bin, and subsurface common midpoint.  

This process is essential to prepare data for simultaneous and joint inversion. 

This simultaneous inversion is model-based, using conjugate gradients to calculate an 

optimal solution.  This inversion is constrained by well log data and defined seismic horizons.  

This inversion process has been applied to single-component data using offset dependency to 
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extract S-wave data, with calculations based on approximations to the Zoeppritz equations (Lines 

and Newrick, 2004). 

Joint inversion uses multicomponent data, with the S-wave data (converted from P-wave 

to S-wave upon reflection) recorded in conjunction with the P-wave data.  This inversion is 

model-based and requires well logs, P-P and P-S data, and seismic interpretation (Weir et al., 

2018).  Five-component seismic data interpolation normalizes the prestack data by calculating an 

even distribution of traces in bins the prestack P-P and P-S recorded data (Trad, 2009).  

Interpolation addresses the problem of offset and bin distribution in the prestack domain, 

improving by regularizing the offset distribution and normalizing the bins to the bin center.  

Rock parameters are calculated from this inversion such as Youngôs Modulus, Poissonôs Ratio, 

and brittleness.  These are used for detailed petroleum reservoir characterization.  Combining 

these data with structural interpretation can lead to the identification of geohazards, ñsweet 

spotsò in the petroleum reservoir, and a way to plan well trajectories, such as with areas subject 

to induced seismicity.   

In order to interpret the inversion results, stratal slices are created from the inversion 

volumes.  The Swan Hills Formation seismic reflector served as a reference and slices from 2 to 

16 ms are created above the Swan Hills Formation.  The 8 ms stratal slice is selected for display, 

the slices are  very similar to the 6, 10 and 12 ms time slices derived from the same data set, a 

function of the band limited nature of the seismic method.  A seismic wavelet is displayed in one 

of the outcrop photographs to illustrate the relationship between seismic resolution and bed 

thickness.  The velocity and density contrast between the Ireton Formation shale and the 
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Duvernay Formation is relatively small, especially compared with the strong peak associated 

with the Swan Hills Formation reflection; it does not have a strong peak or trough uniquely 

associated with it, rather the pick sits on the side of a trough when correlated in the synthetic 

seismogram.  The Duvernay Formation  does not have an observed ñtuningò effect, as observed 

in a shallow gas sand;  rather, there is substantial side lobe effect form the Shan Hills reflector.   

The inversion operator,  using wavelet extraction mitigates this problem by compressing the 

wave form to a spike within the resampled (blocked model, Russell and Hampson, 1991).   

1.14 Microseismic recording 

 Microseismic recording for the petroleum industry was first performed by the El Paso 

Natural Gas Company in 1973 (Power et al., 1976).  Microseismic recording has since been 

deployed over a number of varied settings such as the hot dry rock experiment by Whetten et al. 

(1987) and in geothermal applications such as the monitoring of geysers . Microseismic 

recording came into common use around 1997 (Zinno, 2011) using both downhole and surface 

arrays.  Microseismic monitoring usage has been documented for many unconventional plays 

such as the Montney Formation (Eaton et al., 2013), the Duvernay Formation (Eaton et al., 

2018), the Barnett Shale Formation (Wu et al., 2016), and the Fayetteville Formation (Hobro et 

al., 2016), as well as for the Marcellus, Bakken, and Haynesville Shales (Duncan et al., 2013), 

the tight sand fields and the unconventional oil fields of the Austin Chalk Formation (Phillips et 

al., 1998), and the Eagle Ford Shale (Inamdar et al., 2010).  

  Seismic events have been detected as P- and S-wave arrivals in a time-series geophone 

recording; placing these events in depth requires the use of a velocity model (Lomax et al., 2000; 
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Lomax et al., 2009).  During hydraulic fracture stimulation (fracking), microseismic events are 

recorded on continuously recorded multichannel/multicomponent acquisition arrays.  For the 

microseismic recording used in these studies, the data were acquired before, during, and after 

hydraulic fracturing using a near-surface array.  In this thesis, data are used in their original (raw) 

form with minimal signal processing applied.  Seismic events are detected using a variety of 

methods, which are then converted to hypocenters using a 1D time-depth model.  In order to 

improve event detection, processes commonly used in seismic reflection data are deployed here.  

The result is an improvement in the signal-to-noise ratio and a significant increase in the number 

of events detected.  

1.15 Microseismic event detection methods 

Matched filter analysis (MFA) is a method used for detecting microseismic events 

(Caffagni et al., 2016).  MFA correlates a template waveform against a continuous data stream to 

detect similar occurrences.  Several seismic events are manually picked as template events, 

called ñparentò events.  These events are correlated against the continuous data to detect 

occurrences that match the parent events.  The quality of the ñchildò events are dependent on the 

quality of the identified parent event for each cluster and are affected by the signal-to-noise ratio 

of the input data.  Beamforming (Verdon et al., 2017) generates P- and S-wave travel-time 

lookup tables from identified events.  From these events, a search is performed across the array 

using short-term average (STA) and long-term average (LTA), a time shift is calculated, and the 

aligned tracs are stacked. 
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STA/LTA (Eaton, 2018) calculates the average values of the absolute amplitude of the 

seismic signal in two moving time windows.  When the STA/LTA ratio exceeds a threshold 

greater than a preset value, a seismic event is cataloged.  New methods for event detection are 

currently being evaluated, such as differential kurtosis (Paes and Eaton, 2017).  Kurtosis is used 

with STA/LTA ratio to detect seismic events.  The method is to sum the energy in a collection of 

geophones in a localized area.  The signal delay between geophones between nearby stations is 

used to confirm the specific event. 

1.16 Microseismic depth determination 

Improvement in focal depth determination has been realized as  a newly developed 

technology developed and described here as the ñfocal-time method.ò  Rather than using a 1D 

model to determine the hypocenter locations, a 3D P-P and P-S velocity volume is derived from 

a co-located multicomponent 3D survey calibrated to well control.  The velocity volume used in 

this method takes into account velocity anisotropy and variations in subsurface structure and is 

constrained by nearby well control to convert arrival times to subsurface depths.  Vertical 

transverse isotropy (VTI) is generally the result of bedding plane deposition, where the P and S 

velocity differ in horizontal and vertical directions (Ogiesoba et al. 2003).  Azimuthal anisotropy 

is a condition where  the seismic velocities vary as a function of the direction parallel to the 

bedding planes, or azimuthal direction (i.e. degrees from North).  These variations may be 

caused by fracturing in the rock, reducing the velocity in the direction orthogonal to the fracture 

network.  A 1-D velocity model cannot account for VTI, or variations in structure, whereas the 

focal-time  method does.  This results in accurately positioned hypocenters, which are combined 
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with the P-P/P-S seismic volume and are displayed in the same 3D-rendered interpretation 

environment. With these data, geological insights are obtained as to the nature and propagation 

of fracture and induced seismic events.  In case studies, risks associated with reservoir 

development include induced seismic events (felt earthquakes) and fracture propagation 

occurring in an unexpected manner and without easy explanation by a simple homogeneous 

reservoir model.   

1.17 Microseismic data preparation 

  Seismic reflection processing such as deconvolution filtering and scaling is routinely 

applied to seismic data to reduce noise and enhance the signal (Margrave, 2005).  This 

processing improves the information available for interpretation of seismic events.  This same 

processing is applied to the continuously recorded data for microseismic event recording, 

resulting in a marked improvement in the signal-to-noise ratio over the raw data.  The tests are 

performed using event detection such as STA/LTA ratio and kurtosis; a marked improvement is 

shown in the number of events.  The intent of this work is to provide a method whereby event-

picking algorithms (i.e., STA/LTA ratio and MFA) are provided with a set of data with improved 

signal-to-noise ratio.  The signal processing used here is specifically tailored to the bandwidth of 

the P- and S-wave arrivals, removing signals and noise with frequencies outside this bandwidth. 

1.18 Integrated interpretation  

 The final step in interpretation is to ascribe geological meaning to the seismic data.  Risk 

reduction is a primary component of why seismic data, both continuous and reflection, are 

acquired.  Risks for reservoir quality are assessed through inversion (brittle, ductile), risks for 
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induced earthquakes are assessed by characterizing basement faults, and risks associated with 

fracture propagation are assessed through detailed fault and facies mapping.   Within this thesis I 

consider a fracture to be on opening in the host rock, in a hydraulic fracture operation this often 

is a tensile crack opening (Eaton, 2018).   Conversely  a fault is considered to have movement of 

one plane with respect to another; strike-slip, compressional, tensional, or compensated linear-

vector dipole (knopoff et al., 1970). 

Although somewhat speculative, basement heat flow can be correlated with deep-seated 

basement faults.  The hypothesis is that the increased heat flow may alter thermal maturity in 

localized areas and create overmature (dry gas) reservoirs.  This may explain why dry gas is 

produced in areas mapped to be in the regional condensate window.  

1.2 Thesis organization 

This thesis comprises two published case studies (Chapters 2 and 3) and two expanded 

abstracts (Chapters 4 and 5) that use the technology developed during the course of this research.  

Chapter 6 combines research from the previous chapters and outlines methods using technologies 

developed in this thesis as applied to risk reduction, encompassing both economic and geohazard 

risks.  Chapter 7 summarizes the research developed here and discusses how these new concepts 

contribute to geoscience. 

 1.21 Interpretation and inversionðTony Creek dual microseismic experiment 

Chapter 2 is a paper published in the SEG journal Interpretation that describes the use of 

simultaneous inversion for multicomponent seismic data in a case study.  The intent of this work 

is to investigate the role of reservoir parameters such as Youngôs Modulus and Poissonôs Ratio 
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and determine the influence these have  had on fracture propagation.  The role of geological 

structure is also investigated, considering its role with respect to hydraulic fracture performance 

and induced seismicity.  In this seismic-mapping project, seismic reflection data are correlated to 

the local geology using well logïgenerated synthetic seismograms.  This is followed by PP-PS 

registration, in which the converted S-wave reflection section is tied to the P-wave seismic 

reflection section.  Synthetic seismograms establish a time-depth relationship, identifying several 

key formations.  Fault correlations are performed by observing matching vertical displacements 

in the seismic data and time slices and by observing the lateral displacement in the deep markers.  

Significant lateral variations are observed in the Duvernay Formation with respect to Poissonôs 

Ratio, Youngôs Modulus, and Brittleness index, indicating the  reservoir to be highly variable in 

geomechanical properties. 

1.22 Interpretation and inversionðBigstone North 

Chapter 3 is a paper published in SEGôs The Leading Edge.  The methodology is similar 

to that deployed in Chapter 2, highlighting the Duvernay Formation in a different structural 

setting.  The behavior of the hydraulic fracture propagation differs significantly from the 

adjoining Toc2ME area, the mapping of both structure and inversion attributes are investigated 

to explain these differences. The research uses multi-component 3-D seismic data to produce a 

structural interpretation, and integrate seismic inversion attributes such as Youngôs Modulus, 

Poisson`s Ratio, and Brittleness into the seismic interpretation.  Hydraulic fracturing operations 

caused an induced event (a felt earthquake) , followed by several aftershocks.  The 3D/3C 

Bigstone North seismic reflection dataset relates directly to the seismic survey ties of ToC2ME 
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to the south, with several square kilometers of overlapping coverage.  Although the fracture 

stimulation programs are within 10 km of each other, there are significant geological differences 

between the two areas. 

1.34 Application of deconvolution to continuously recorded passive seismic data  

The intent for the research in Chapter 4 is to demonstrate how the raw signal recorded 

during a microseismic survey can be improved by using established  signal processing 

techniques commonly applied to reflection seismic processing  This realization came about from 

earlier work in reflection data field testing where field processing were used in real time for raw 

field data evaluation.  Often, a field shot record during the test sequence would be devoid of 

observable reflection events, a single pass of deconvolution would bring out these events so they 

could be easily observed.  Applying these processes to continuously recorded (microseismic 

data) is observed to produce  similar results;  continuously recorded seismic records seemingly 

devoid of events in their raw state are observed to have visible seismic events.   The effect of 

pre-processing is evaluated on three different automatic event picking algorithms, and the 

improvements to seismic auto picking methods are evaluated.  

1.35 Focal-time method 

 Chapter 5 describes a new method for focal-time/depth estimation (hypocenter depth 

determination), that I co-developed.  This method was originally published as an SEG expanded 

abstract and given as an oral presentation at the 2018 SEG meeting in Anaheim, California.  The 

focus of this chapter is to demonstrate how this new technique, the `focal-time method, is used 

and applied to an existing microseismic catalog, showing how it can improve the depth solution 
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over previous model-based methods.  The new method uses the interpreted P- and S-wave 

seismic events to derive a velocity field over the 3D volume in both the P- and S-wave domains.  

This new method implicitly accounts for vertical and horizontal anisotropy, as well as variations 

in geological structure.  These data are used to locate the microseismic events into equivalent 

times and depths within the seismic volume.  This is a departure from previous methods using a 

1D velocity model based either on well logs or on a layer cake model.  This method is used to 

determine hypocenter depths in the same manner that the seismic reflection data are converted to 

depth.  These microseismic hypocenter events are used as a key component of the seismic 

interpretation and mapping.  

1.35 Integrated interpretationðUsing microseismic to derisk the Duvernay 

In Chapter 6, microseismic events are incorporated into the seismic volume (generated 

from the work in Chapter 5), and an interpretation is derived using fault mapping, reservoir 

characterization, and microseismic hypocenters.  This chapter proposes a method whereby 

accurately positioned hypocenters (from focal-time), seismic inversion, (E,PR, BRI, from 

inversion), and structural interpretation (strike-slip and Riedel shear faulting) are incorporated 

into a comprehensive reservoir description.  The interpretation workflow incorporates all of the 

reflection and microseismic data into a 3D visualization workstation, allowing the use of 

microseismic hypocenters as an independent component of the seismic interpretation.  An 

explanation of microseismic fracture propagation is proposed, as well as a mechanism where 

induced seismicity is triggered.  The emphasis is on de-risking the Duvernay Formation, taking 

into account induced seismicity, variations in structure, and lithology.  
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1.3 Main thesis contributions  

 New technologies, findings, and methods developed in this thesis are as follows: 

¶ A new method is developed to determine the depth of microseismic events.  The 

focal-time method replaces 1D velocity modeling with a velocity volume derived 

from a reflection survey, thereby accounting for anisotropy and subsurface structure.  

¶ A new way of applying established signal-processing methods to continuous data for 

signal enhancement and event detection.  This results in a significant increase in the 

number of detected events, and a potential reduction in the uncertainty of passive 

seismic event picks.  

¶ A geological interpretation to explain why hydraulic propagation occurs in the 

manner observed and how fault and geological facies are the important factors. 

¶ An explanation as to how and why large-magnitude seismic events (induced 

earthquakes) can occur based on deep-seated faults at depths significantly shallower 

than the treatment interval4.  

¶ A workflow designed to mitigate risk and potentially improve the economics of 

Duvernay Formation unconventional field development. 

 

  

 

4 The work in Chapter 3 of this thesis is an integral part of the publication Eyre et al., The role of aseismic slip in 

hydraulic-fracturing induced seismicity, Science Advances 28 Aug 2019: Vol. 5, no. 8. 
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Chapter 25 

Inversion and interpretation of seismic-derived rock properties in the 

Duvernay play, Tony Creek dual microseismic experiment 

2.1 Summary 

This chapter summarizes the development of an interpretive seismic workflow that 

incorporates multicomponent seismic inversion, guided by structural mapping, for characterizing 

low-permeability unconventional reservoirs.  The workflow includes the determination of a 

calibrated time-depth relationship, generation of seismic-derived structural maps, poststack 

inversion, AVO analysis, and PP-PS joint inversion.  The subsequent interpretation procedure 

combines structural and inversion results with seismic-derived lithologic parameters such as 

Youngôs Modulus, Poissonôs Ratio, and Brittleness index.  I applied this workflow to a 3D 

multicomponent seismic data set from the Duvernay play in the Kaybob area in Alberta, Canada.  

Subtle faults are discernible using isochron maps, horizontal time slices, and seismic stratal slices.  

Fault detection software is also used to aid in the delineation of structural discontinuities.  I show 

that seismic-derived attributes, coupled with structural mapping, can be used to map reservoir 

facies and, thus, to highlight zones that are most favorable for hydraulic fracture stimulation.  By 

imaging structural discontinuities and pre-existing zones of weakness, seismic mapping also 

contributes to an improved framework for understanding induced seismicity risk.  

 

5 Published in the SEG journal Interpretation, 2018, 6, SE1-SE14. 
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2.2 Introduction 

Unconventional plays represent resource fairways, including those characterized by low-

permeability, organic-rich rock formations, that are not economically producible by conventional 

drilling and completion methods.  Low-permeability unconventional plays, such as the Duvernay 

Formation in the Western Canadian Sedimentary Basin, are now routinely developed with multiple 

horizontal wells drilled from a single surface location and are completed using hydraulic fracturing 

technology to enhance permeability and enable economic rates of hydrocarbon production (e.g., 

Dusseault and McLennan, 2011).  Figure 2.1 shows the placement of the project area within the 

Western Canadian Sedimentary Basin, the thermal maturity regions, and the general stratigraphic 

column.  In planning an unconventional drilling program, well logs, cores, and seismic data can 

provide valuable information for horizontal well placement and the design of hydraulic fracture 

stages.  Parez and Marfurt (2015) described the importance of applying seismic to provide 

estimates of lithologic parameters such as Youngôs Modulus, Poissonôs Ratio, and brittleness.  

Prior to the widespread development of unconventional resource plays, Pennington (2001) 

introduced seismic imaging as a primary tool to deliver statistical constraints for reservoir 

development within an emerging framework of reservoir geophysics.  In contrast to traditional 

approaches for seismic exploration, Pennington (2001) emphasized how the calibration of 3D 

seismic models using well data, combined with rock-physics relationships, could be used to 

differentiate between competing  
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Figure 2.1.  Hydrocarbon maturity windows for the Duvernay petroleum system (modified from 

Creaney and Allan [1990]), showing location of the study area.  The stratigraphic column on the 

right (adapted from Core Labs Stratigraphic Correlation Chart [2017) shows Middle and Upper 

Devonian regional stratigraphic nomenclature, highlighting several units that are discussed in 

this thesis.   

reservoir models on the basis of lithologic character, fluid content, and in-situ conditions such as 

pore (over) pressure.  Dommisse (2013) applied similar concepts to unconventional reservoirs and 

demonstrated how stratal slicing can be a powerful technique for seismic reservoir 

characterization.  By focusing on lateral spatial variability in the seismic expression of various 

reservoir facies, Dommisse (2013) argued that stratal slicing can overcome bandwidth-related 

limitations in vertical seismic resolution.  
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Goodway et al. (2010) described methods built on the use of AVO analysis to differentiate 

ductile shale reservoirs from brittle reservoirs in the Barnett Shale of Texas.  Lambda, mu, and rho 

(LMR) parameters were derived from well logs and were cross-plotted and compared with data 

derived from seismic inversion.  Trends that emerged from this approach demonstrated that 

variations in rock properties, often attributed to the brittle behavior of reservoir rocks, exhibit 

coherent patterns that reflect reservoir quality.  When seismic-derived LMR attributes are back-

projected onto a seismic section, trends in brittleness are observed and can be mapped spatially 

within a seismic volume.  Perez and Marfurt (2015) showed that this technique can be useful to 

extract mineralogical content of rocks.  The importance of fault mapping was highlighted by 

Refayee et al. (2016) in a Utica Shale example.  Parameters such as dip, similarity, and curvature 

were extracted from the seismic data and incorporated into an interpretive model.  A ñfault 

enhancementïfilteredò (FEF) seismic volume was derived from the seismic cube (similar to 

semblance) and was used to map major faults and image fracture networks.  Refayee et al. (2016) 

proposed that sweet spots within in the reservoir are defined by areas of enhanced natural fractures 

and are mappable within the seismic volume. 

Meek et al. (2013) highlighted the advantages of a multidisciplinary reservoir geophysics 

approach by combining results from microseismic monitoring, structural attribute analysis, and 

seismic petrophysics.  Comparison of recorded microseismic events with curvature anomalies and 

other seismic-derived attributes such as Youngôs Modulus revealed a strong correlation with the 

density of recorded microseismic events.  Prospective areas for future development were then 

identified based on seismic attributes.  Similarly, Rafiq et al. (2016) showed how sets of attributes 
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extracted from microseismic data can be correlated with curvature anomalies from 3D seismic data 

to partition a reservoir into depositional facies units. 

Chopra et al. (2017) conducted a seismic analysis within part of the Duvernay play to show 

that induced seismicity appears to follow pre-existing basement faults.  Schultz et al. (2017) 

investigated areas within the Duvernay play that are prone to induced seismicity from hydraulic 

fracturing and identified event hypocenters extending from the Duvernay into the underlying 

Precambrian basement.  This study confirmed a correlation between the presence of basement fault 

systems and the location of induced seismic events.  Igonin et al. (2017) used a passively recorded 

data set (co-located within this studyôs 3D/3C seismic survey) to analyze induced seismic and 

microseismic events. 

This study makes use of a 3D/3C multicomponent seismic data set in the Kaybob portion 

of the Duvernay play, within a region where nearby induced seismic events (felt on the surface as 

earthquakes) have occurred (Bao and Eaton, 2016).  Analysis of this data set includes structural 

interpretation and mapping, fault detection, and reservoir characterization based on poststack and 

simultaneous P-P and P-S inversion.  Various presentations of the data are used to illustrate how 

structural and inversion attributes can be employed to identify areas that are most prospective for 

development, as well as areas where the existing fault architecture may pose a risk for induced 

seismicity.  

The main objective of this study is to present a comprehensive workflow for interpretive 

processing and inversion of 3D/3C multicomponent seismic data for unconventional reservoir 

geophysics.  I start with observation of the Duvernay/Leduc system in outcrop and use the 
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observations of the outcrop to guide the interpretation.  The faulting in the Duvernay Formation 

can be correlated and interpreted considering basement tectonics.  The Gilwood Formation, 

affected by the same tectonic regime, provides a guide to the tectonic history, giving insight into 

deep-seated strike-slip and vertical-offset basement faulting.  The study area has a history of 

induced seismicity (Igonin et al., 2017), which can be used independently to spatially identify fault 

activation.  I apply this approach to a data set from the Duvernay play, demonstrating how seismic 

data can be used to map structural discontinuities and faults, thus providing insights into the 

tectonic history of the reservoir.  I also show how seismic inversion applied to poststack and 

multicomponent data gathers (P-P and P-S) can be used as a tool to identify facies changes, fault 

boundaries, and potential geohazards such as basement faults.  

2.3 Geological setting 

The Duvernay Formation, a bituminous/argillaceous carbonate of Late Devonian age in the 

Western Canadian Sedimentary Basin, is emerging as a major resource play in North America 

(Hammermaster, 2012; Creaney and Allan, 1990).  The Duvernay is rich in organic matter and, 

depending on thermal maturity and position within the basin, it produces gas, natural gas liquids 

(NGLs), or oil (Switzer et al., 1994).  It is also commonly believed to be the primary source rock 

for the Devonian Leduc reef, Nisku, and Wabamun carbonate plays (Dunn et al., 2012).  With the 

advent of increasingly widespread horizontal drilling and multistage hydraulic fracturing, the 

Duvernay is being recognized as a world-class unconventional resource play (Davis, 2013).  

The Duvernay Formation was deposited adjacent to several large Leduc reef complexes (Figure 

2.2).  The Duvernay has an effective porosity of 6 to 7% and an average total organic carbon (TOC) 



30 

 

 

 

content of up to 4.5% (Chopra et al., 2017).  It is correlative with the lower member of the Leduc 

Formation (Figure 2.2) and is believed to be the source rock for most of the Leduc, Nisku, and 

Wabamun oil pools in Alberta (Dunn et al., 2012).  Leduc reef growth was terminated by sea level 

rise, during which the reef-building organisms were ultimately unable to keep up with the rising 

sea level and were drowned (MacKay, 2018).  The Leduc and Duvernay Formations are both 

overlain by the quartz-rich Ireton Formation, which forms a cap and seal to hydrocarbon reservoirs.  

 The depositional environment of the Duvernay Formation varies depending on where it is 

situated with respect to the Leduc reef margin.  Factors influencing the depositional environment 

include tides, storms, and sea level changes.  Interreef areas have been protected from waves and 

tides, so sediments in these regimes have been deposited in a low-energy environment.  In the 

subsurface, five lithofacies have been identified from cores (Dunn et al., 2012): argillaceous 

mudstone, bioturbated limestone, organic-rich siliceous mudstone, siliceous organic-rich 

mudstone, and mixed siliceous mudstone.  
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Figure 2.2.  Generalized regional cross-section showing stratigraphic relationships of the 

Duvernay Formation with Leduc reef buildups and adjacent Devonian units.  Inset shows 

location of cross-section.  Adapted from Switzer et al. (1994).  

 

Variability in depositional setting is evident in Figure 2.3, which shows a Leduc reef 

(Presquôile Formation) outcrop characterized by multiple stages of reef growth, with adjacent 

Duvernay-equivalent (Perdrix Formation) strata.  This outcrop exhibits both lateral and vertical 

lithofacies variation within the section, including relationships relative to the reef margin.  The 

reef mass visible in this exposure is 100 m thick and 250 m wide in section.  The reef exhibits five 

distinct episodes of growth.  To the north, the Perdrix Formation transitions into a quartz-rich 

shale.  The increase in quartz content has an influence on rock properties; quartz-rich areas have a 
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higher Youngôs Modulus and a lower Poissonôs Ratio and may be more brittle than the rocks near 

the reef (Cho and Perez, 2014).  This outcrop shows, at a scale similar to features resolved by 

seismic images, how the Duvernay Formation lithology varies both laterally and vertically.  It 

follows that reservoir characteristics such as P- and S-wave velocities, density, and Brittleness 

index exhibit similar lateral and vertical variability in the subsurface. 

 

Figure 2.3.  Outcrop of Perdrix Formation (Duvernay-equivalent) and Presquôile (Leduc-

equivalent) strata in the Rocky Mountains south of the study area (49.41011162N, and 

114.58814773E) (source: Google Earth).  (a) Image with Leduc (yellow)- and Duvernay-

(orange) equivalent units highlighted.  The reef strata are more resistant to erosion.  (b) 

Geological interpretation showing dimensions of the features, which are at a scale compatible 

with seismic resolution. 
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33 

 

 

 

Brittleness has been identified as a key indicator of sweet spots in unconventional plays 

(i.e., areas that are developed with horizontal drilling and completed with hydraulic fracturing) 

(Cho and Perez, 2014).   In general, brittleness is a desirable property that defines which rocks will 

fracture and yet maintain sufficient strength for the fractures to remain open after placement of 

proppant.  Cui et al. (2017) presented various definitions of brittleness, including how it is derived 

and how its expressions are relevant to reservoir characterization.  In this paper, I use the definition 

of brittleness proposed by Rickman et al. (2008), which is based on P- and S-wave velocities and 

density. 

A rock with a high Brittleness index will necessarily have a low Poissonôs Ratio and a high 

Youngôs Modulus.  Within an established lithofacies framework, a strong correlation exists 

between quartz content, TOC, and brittleness of the Duvernay Formation (Dunn et al., 2012).  The 

higher silica content of the Duvernay comes from deposition at distal, low-energy areas.  

Soltanzadeh (2015) provided evidence that clay content also plays a significant role in the 

brittleness of the Duvernay and Ireton Formations.  Moreover, hydrocarbon generation has 

changed rock properties such that the high TOC in the Duvernay Formation tends to be more 

brittle.  

2.4 Interpretive workflow  

2.4.1 Amplitude-versus-offsetïcompliant processing 

The 3D multicomponent seismic data used in this study, acquired and processed in 2015,  

are processed in an AVO-compliant manner (e.g., Lee et al., 1991; Allen and Peddy, 1993) by 

using processing steps designed to preserve relative amplitudes for both P-P and P-S data sets.  
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The AVO-compliant processing flow used to generate the P-P data volume is generally similar to 

a conventional seismic-processing flow, with a few key differences.  Spectral balancing is applied 

in a surface-consistent manner (Taner and Koehler, 1981) by scaling low-amplitude frequency 

bands using correlated stack equalization.  Noise attenuation is then performed in the cross-spread 

domain (Calvert et al., 2008).  Traces with residual anomalous amplitudes (i.e., outliers) are 

manually edited from the data.  Prestack time migration (e.g., Fowler, 1997) is then applied, 

followed by a radon multiple attenuation (Kelamis et al., 1990).  Five-dimensional (5D) 

interpolation and normalization (Chopra and Marfurt, 2013) is then applied to the data in order to 

fill in missing traces and to normalize the data to the bin center.  

Essentially the same AVO-compliant workflow is applied for P-S data processing, with 

several adaptations that account for the specific raypath geometry of converted waves (Stewart et 

al., 2002), in addition to S-wave splitting.  In particular, the bin centers are determined using 

common conversion point binning (Eaton and Lawton, 1992).  S-waveïsplitting analysis is 

performed to determine the time shift and rotation angle between the fast and slow qS arrivals.  An 

amplitude compensation is performed using the approach of Jin et al. (2000) that applies 

corrections that reverse the S-waveïsplitting effect along the upgoing raypath.  After applying 

these processing steps, a 5D interpolation and normalization is performed, with the P-S output bins 

normalized (interpolated) to coincide with the location of the P-P bins.  The version of the stacked 

data used in this study for interpretation and prestack inversion is limited to a maximum 40ę P-

wave incidence angle, based on ray-tracing using a velocity model derived from a control well 
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(well A) that is discussed below.  The corresponding gathers then have residual normal move-out 

and trim statics (e.g., Hoeber et al., 2005) applied to both the P-P and P-S prestack data volumes. 

2.4.2 Structural mapping  

 Sonic and density logs from a control well (well A) are used to generate a synthetic 

seismogram in order to achieve a precise tie to the seismic data (Figure 2.4).  During this 

process, the source wavelet is also estimated.  Well A is logged to the Middle Devonian Gilwood 

 

 

Figure 2.4.  P-P synthetic seismogram well tie for the interpretive workflow, showing the 

extracted source wavelet.  The integrated two-way times from the P-wave velocity (VP) log at 

well A are shifted to match the observed times.  Zero-offset synthetic seismograms are 

duplicated for clarity.  Those plotted in blue are from the zero-offset synthetic, while those 

plotted in red are the actual seismic traces at the wellbore.  A good fit for the latter synthetic 

seismogram is evident by overlaying it onto the P-P data volume at the location of well A, as 

shown on the right.  This correlation provides confidence for the horizon picks and time-depth 

relationship.  The location of well A relative to the seismic survey is indicated in Figure 2.6. 
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member of the Watt Mountain Formation to a depth of 3607 m.  This synthetic seismogram tie 

establishes a time-depth relationship, which is subsequently used to create angle gathers, perform 

PP-PS registration, and provide a calibration point for the seismic inversion.  Figure 2.5 shows a 

west-east seismic profile extracted from the P-P stacked data volume.  The density and sonic curves 

from well A are overlaid to illustrate the correlation of these log curves with the seismic profile. 

The Duvernay, Gilwood, and Precambrian seismic horizon are correlated based on the tie to well 

A.  A horizon marking the top of the Precambrian basement is also picked based on a regional 

correlation from a deep-crustal seismic profile (Eaton et al., 1999) that passes close to this 3D 

seismic survey.  Structural discontinuities are evident as breaks or sharp bends in the picked 

horizons. 

Figure 2.5.  West-east seismic profile extracted from the P-P data volume, showing the synthetic 

seismic correlation with the Duvernay and Gilwood horizons.  A series of interpreted steeply 

dipping faults is indicated.  At well A, sonic (ȹt) and density (ɟ) logs are shown.  The location of 

this profile is highlighted in black on Figure 2.6. 
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Figure 2.6 shows a perspective view of time slices from the P-P data volume intersecting the 

Duvernay and Precambrian horizons.  The location of well A relative to the 3D seismic surface is 

also shown.  Both time slices reveal amplitude trends that define a prominent set of north-southï

oriented features.  In the case of the shallower time slice, terminations of these prominent features 

occur along a northeastward trend, defining a secondary set of lineaments.  

  

 

Figure 2.6.  Perspective view showing amplitude time slices through the P-P seismic volume at 

(a) 2,000 ms and (b) 2,150 ms.  The shallower time slice (a) intersects the Duvernay horizon, 

while time slice (b) intersects the Precambrian time surface.  Both time slices reveal 

approximately north-southïtrending linear topographic features that are interpreted to be 

associated with fault systems.  The black line shows the position of the seismic profile displayed 

in Figure 2.4. 

 

  Time-structure maps are created throughout the data volume for all of the horizons listed 

above.  Representative time-structure maps of the Second White Speckled Shale and Duvernay 






































































































































































































































































































































