A particle/collision model of seismic data
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ABSTRACT

It can occasionally be a valuable exercise to take a familiar phenomenon and
observe it from a different point of view. For instance, in the right frame of
reference, waves in a VSP experiment seem to act like particles, drifting freely or
accelerating in a potential, and thereafter colliding, sticking together, and
spontaneously disintegrating. In fact all of the important properties of simple
wave phenomena (phase velocities, propagation directions, amplitudes, reflection
and transmission coefficients) are correctly captured by speaking of the
experiment entirely in terms of a system of colliding particles (with well-defined,
though notional, masses, velocities, momenta). In the same framework, a
seismic event, meaning a coherent arrival of wave energy to which we assign a
well-defined history of propagation, reflection, and transmission, can be
represented in one of two ways. Either a single particle, whose “world-line” is
free to move both forwards and backwards in time, or several particles
interacting through a specified set of the aforementioned productions and
annihilations.

Reflection & transmission as mass/ momentum conserving collisions

Let us take a zero-offset VSP experiment, and imagine that we experience it
occurring in an unusual way. Rather than seeing it as a set of seismic
amplitudes, available to us over a defined depth interval, evolving as we step
forward through time, let us take the reverse view. Let us imagine we perceive
the same experiment as a set of amplitudes over a defined time interval,
evolving as we step forward through depth. Pretend, in other words, that we
experience depth the way we normally experience time, and vice versa.

Consider a subsurface with a single reflector at depth z,, separating media
with velocities ¢, above and c; below. Receivers are at depths z, within the well.
The response at z; is, if z, < z;, a direct downgoing wave of amplitude 1 and an
upgoing wave of amplitude R, and, if z, > z,, a downgoing wave of amplitude T.

Suppose we were to make a movie out of the results of this experiment. Each
frame is a seismic trace, i.e., the wave field over the full time interval at a given
z,- We create a suite of frames by letting z, vary from O up to some z.,,. We
arrange them from smallest z, to largest, and run it. FIG. 1 contains five of
these frames, illustrating the general look of the movie. Because the direct wave
takes longer to arrive as z, grows, the disturbance on the left appears to drift to
the right with a uniform apparent velocity (i.e., the rate of motion along the time
axis per unit change in depth). The reflection from z, arrives at maximally late
times when z, is small, and hence the right-most arrival appears to drift to the
left. When z, = z, the two arrivals coincide. For z, > z;, only one disturbance,
the transmitted wave, remains, and since it propagates downward, it retains the
right-moving motion of the direct wave, though, since ¢, # ¢,, it does so at a

different apparent velocity.

To the eye, the movie in FIG. 1 appears to depict two objects, one large and
one small, moving towards each other at equal and opposite rates. They appear
to collide at the apparent time z, = z,, whereafter, stuck together, they proceed
together in the same direction that the original larger object had, but more
slowly. If we were to put two carts of different masses on a track and set them
on a collision course, and if we could arrange to have them lock together upon
colliding, we might expect to see something like FIG. 1 happen.

The masses and velocities of two carts obey clear rules, to wit, their masses
and momenta before and after the collision are conserved. To what extent do
the “particles” in the VSP movie follow rules of this kind?
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FIG. 1. Collision view of VSP data; 5 snapshots at increasing depth. Bottom two panels are below z,=500m.

The particles with amplitudes 1, R, and T drift with apparent velocities
vp=1/C,, Vk=-1/C, and v;=1/c, respectively in this view; let us furthermore assign
them masses equal to their amplitudes: my=1, my=R and m=1. If we make
this assignment we find that the principles of conservation of mass and
momentum provide us with the correct wave relationships typically generated by
continuity of the field and its derivative across the boundary:

Mp + MR = Mt
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Disintegrations & particles moving in a potential

The same rules correctly express all processes of reflection and transmission
in media with multiple interfaces, provided momentum- and mass-conserving
distintegrations are permitted also (please see the report for more details). Two
complications of the seismic problem that cause the particles to appear to
accelerate, as opposed to drift freely, are (1) a smooth velocity variation c(z),
and (2) offset. A possible way to accommodate this type of behaviour in a
collision model is to see these influences as potentials affecting the motion of
the particles. If v(z,) is the apparent velocity varying with depth, but z, is
interpreted as an apparent time variable, then the whole function is, in essence,

expressing T (7-)

Where X is the location of the arrival on the trace, and we replace z, with T to
remind us that it is acting as time. This may be differentiated and integrated to
determine the potential energy V a particle must have in order to undergo these
changes in apparent velocity, thus incorporating background velocity changes
and offset into the model for a direct wave of amplitude Pj:

V(z) = Fp w:’i‘(zc’)dx’

0

Seismic events

The particle/collision view provides a means for the classification of
seismic events based on characteristic sets of particle interactions. In FIG.
2 we focus on a portion of the paths of wave energy in a two interface
model, corresponding to a transmitted multiple. The particle “movie” can
be created by sweeping a horizontal line across this diagram. In the movie,
particles interact as illustrated in FIG. 3.
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FIG. 2. An event is an arrival with a definite propagation history. It can be represented with a line
diagram of the wave path over the course of its various reflections and transmissions. Depicted here
is a first order multiple. The event seen over the totality of t and z, appears as a single entity which
travels sometimes forwards and sometimes backwards in apparent time z,. If the event is seen with z
growing from small to large values, it instead appears as three interacting particles.
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FIG. 3. Frames from the movie of the three particles whose interaction is characteristic of a first order
transmitted multiple. In FIG. 2 we saw the multiple as a single entity, a sequence of line segments
depicting propagation forwards and occasionally backwards in apparent time. To view it entirely in terms
of particles colliding, we constrain time (z,) to move forwards, hence we do not discern partially time-
reversed processes as straightforwardly as this. Instead, we perceive it as three interacting particles, all
moving forwards in time, but in different directions. In this Figure are ten snapshots of the collision
model movie. At z <z, (A), the multiple consists of a single particle drifting to the right. At time z =z, it
decelerates (B) and there is a spontaneous production of two more particles (C), one drifting to the right
and one to the left. Two of these approach one another, ultimately colliding and annihilating (D) at time

Z,=2,. The right-going particle continues to drift in that direction (E).

CONCLUSIONS

It may be useful to discuss more complex wave interactions such as
conversions within a particle/collision framework. Also, the elements of
the model seem well-suited for a discussion of the nature of reverse
time migration and its various imaging conditions.



