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Abstract
Two papers have previously been presented for evaluating the Intersection of planes Least squares and the Covariance matrix
sensitivity of locating a microseismic event: a Monte Carlo method Consider the equation of a plane 1n 3D space of x, y, and z, Consider six points on a straight line, where there 1s noise on the
that perturbed the geometry, and a linear algebra method that used ax+by+cz=d, (1) y coordinate. If we know the standard deviation (SD) of the noise,
singular value decomposition (SVD). ’ we can plot the data in Figure 3, where the vertical axis displays the
. as shown in Figure 2a. Two planes intersect to produce a line in (b) distribution of the noise for a SD of 0.9 and 0.3. The original line is
These papers have been combined to be used as a tool to . . . . .
and three planes intersect at a point in (¢). in gray, and “x”” marks the location of the observed value.

understand the linear algebra behind the SVD method.

Theory

The traveltime equations for raypaths between a source at (x,, V.
z,) and four arbitrarily located receivers at (x,, vy, z;), (x5, V5, 2,), (X3,

V3, Z3), and (x,, y,, z,) are:
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Cr=x) +(h =y,) +(z,—2,) =v'(t, ~1,)
O, =x%) + (1, =y,) +(2,-2,) =v'(t,~1,)" (1)
(x,—x,) +(y, =y, +(z,—z,) =v(t, -1’ FIG. 2 The intersection of planes.
(e, =x%) + (=) +(2,—2,) =v'(t,~1,)
If the velocities and traveltimes are known, the location of a
microseismic event can be computed. Any noise or error in the

FIG. 3 Six point and their noise distributions of 0.9 and 0.3.

We use these points to estimate the equation of the line
y, =mx,+¢ where we have more points (observations) than
unknowns (m, c¢). The solution 1s typically found using least

The equations for the three planes are
ax+byv+cz=d,

estimated arrival times (jitter) at the receivers will produce an error ax+by+ez=d,, (2) caquares. where the equations are written in matrix form
in the source location. If we know the distribution of the noise, then a,x+b,y+c,z=d, 1 ’ 1 i
we can define the sensitivity of the location, relative to that noise. The location of the intersection point is found by solving these Gx=y, (10)
The first method uses a Mote Carlo approach where many tests equation for x, y, z_md < ertt_e_n 1_n 11_nea_r equation form and the least squares solution
are conducted when noise 1s added to the receiver traveltimes. The a, b ¢ || x d, X (GT G)'l G'y. (1)
second method uses Linear Algebra to compute the distribution. a, b, c ||yv|=|d,|. (3) |
Monte Carlo resul a, b, c |z d, 1s shown as the red line i Figure 4
One hundred test were conducted where random noise (jitter) G x = d Consider Figure 4 again in which we have five poi.nts With a SD
was added to the receiver clock-times. The corresponding source and the solution 1s found from of 0.9, and one with 0.09. We weight the equations inversely
locations were computed and plotted in the displays below. Note o proportional to the SDs with a weight vector w
the sensitivity in the depth of the estimated locations. o x=6d @) wGx=wy, (12)
PR o B T Gauss elimination
SN T 8 T O O T A B T B . . . . . or the matrix W giving a least squares solution
e = Assuming the three equations are linearly independent, 1.e. they FVTe 1
P I P are not parallel, we can then combine the equations by scaling and G'WWGx=G W'y, (13)
222:1:!:1 :22::!:1 addition to solve for x. x=(G'W'WG) G'W'y. (14)
L PenvewXvessY Perspeslieniey Jacobt The weighted least squares (WLS) solution 1s the cyan line in
o I U OO O O O Ty ] The G matrix is broken into diagonal, upper and lower matrix Figure 3. It 1s closer to the gray line and passes very close to the fifth
ol O N T S ] o - o ) solution point.
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Linear algebra was also used to estimate the error distribution of Then written as
a microseismic event when jitter 1s added to the receiver clock-
e e v (D+U+L)Gx=d,  (6)

times. The variance of the noise 1s passed through the covariance
matrix to analytically produce the distribution shown below. Dx=d-(U+L)x, (7)

x,=D"(d-(U+L)x,_ ). (8)

FIG. 4 LS and WLS solution.

3D view of error distribution, std=2ms 3D view of error distribution, std=10ms

We call the C=W'W  matrix the Covariance matrix at the

The last equation 1s written in an iterative form. diagonal elements contain the variance of the observations.

Gauss-Seidel

Equation (6) can be re-written 1n a form to update the parameters
as soon as they are computed,

z(m)
o

The next steps are to proceed with eigenvectors and singular
value decomposition (SVD) to solve our stability problem.

a5 27 B
5 0%%2y m) x,=(D+L) (d-Ux,_ ). (9)

FIG. 1 Linear algebra distribution of a source location.
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