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As a result, one would have to minimise the

| | o | Relation between a and Q
following non-linear objective function

Plotting a values versus corresponding receiver
depth for various values of Q provides illustrate a
proportional dependency between a and depth
and an inverse relation between a and Q.

lll. Estimation of the Lipschitz

exponent: non-Linear model

To asses the effects of absorption on a function’s
regularity we apply the CWT on a seismic trace and
subsequently form and minimise the objective

Introduction

In seismic signal analysis, regions of abrupt change, " o —1 |
often considered expressions of underlying tzﬁ(A,Ot,O')=Z[10g2 ai\—logz(A)—jJr 5 (log,(o* +2°)]°
singularities within a given function contain L=l (3)

considerable amount of a signal’s information

ll. Estimation of the Lipschitz
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transform enables us to obtain the modulus exponent: Linear model ¥ il =
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Lipschitz exponent (a) and the possibility of 1 ' ' 15 function, we expect a Lipschitz value close to -1. L L .
g v e e s (L |
function’s regularity and the quality factor Q. 0 \ o | are obtained using the steepest descent method. | _ 5 ghly
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estimate for a which is equal to -0.999. The
intercept produces the value for A, which is equal

objective function. However due to absorption,
one would have to model a given pulse as delta

. Implementation of CWT and
extraction of modulus maxima

Applying continuous wavelet transform to a given
function say f and obtaining the modulus maxima
at each scale s leads to the following relation

to 2.33. Additionally one could estimate a and A
by forming the objective function in order to
estimate A and a. Using this method, we obtain a
value of 2.44 for A and a value of -1.0004 for a.

Objeviive Function

V. Scale cut-off approach

Given the non-linear nature of our model, the
steepest descent is time-consuming and
inefficient. As an alternative to the steepest
descent, one may consider linearising the problem
by analysing the dominant behaviour of a and

function convolved with a Gaussian which in effect
leads to a non-linear model. Thus, in order to
estimate the Lipschitz exponent, one could use the
steepest descent or some sort of thresholding
method in order to simplify the problem.

The results illustrate a relation between
absorption and a functions decay, which could be
used to establish an empirical relation between
the associated Lipschitz exponent and Q. It would
be of particular interest to test the model on field
data and analyse the presence of noise, primaries,

(Mallat and Zhong, 1992), imposing a threshold on the scales.

The problem of visual bias complicates this
approach. In addition, this approach should be
expected to encounter significant accuracy issues
for combination of low Q and large propagation

W f(x) < As® (1)

where ‘st(x)‘ is the modulus maxima of the
function f(x) at various scales s=2. Linearising

equation (1) by taking logarithm of both sides distances oupla Vs Scale with varying Q values on the non-linear model.
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