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Introduction

We present a 1.5D MATLAB implementation of the inverse scattering
series internal multiple prediction algorithm developed by Weglein and
collaborators in the 1990s.

We discuss the transformation of the data from the space and time
domain to those of wavenumber and pseudo-depth, and the
subsequent prediction operation, and illustrate the procedure with a
synthetic example.

Our plan forward is to apply with the 1.5D algorithm the methods
developed by Hernandez for the 1D algorithm (in this report), which
involve stepping from synthetic, to laboratory, and finally to land data.

The algorithm of Weglein and Araujo |: input

The procedure for generating the input to the prediction algorithm is
much the same as that by which a constant velocity Stolt migration is
carried out. We begin with a data set measured over intervals in lateral
source location xs, lateral receiver location x4, and time t. The data are
Fourier transformed over all three of these coordinates:

d(xg, Xs, t) — D(Kkg, Ks, w). (1)
and a change of variables is made from w to k;:

D(kg, ks,w) — D(Kg. ks, kz), (2)
where k; = q4 + gs and

W kgcg W kgcg (3)

The data are scaled by —i2qs, forming
B'](kgakSakZ) = (_IZqS) D(kgak&kZ)a (4)

and B is, finally, inverse Fourier transformed over k,, appearing in the
wavenumber-pseudodepth domain as

B'](kgak&kZ) — b'](kgakSaZ)' (5)
The quantity b4(ky, ks, Z) is the input to the prediction algorithm.

The algorithm of Weglein and Araujo ll: prediction

The prediction algorithm in 2D is then
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and the gy are vertical wave numbers associated with the various
lateral wave numbers and the reference velocity ¢q. In 1.5D the
wavenumbers are integrated over analytically and the algorithm is
significantly simpler:
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where K; = 2qq.
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Data requirements

We assume the availability of a single split-spread shot record of input
data with direct arrivals muted (halt muting at offsets where the direct
wave begins to interfere with reflections). Deconvolution and
deghosting are a useful preprocessing step; if the internal multiples are
resolvable in the data without these steps, they may be avoided (we will
not deconvolve our synthetic data later in this paper), though this will
lead to a more involved subtraction problem subsequently.

Two interface model
In Figure 1. we illustrate a simple two interface model which we will use
to test the internal multiple predictions.
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Figure: 1. A two-interface layered acoustic medium model with impedance contrasts
suitable for generation of internal multiples.

Synthetic data

In Figures 2a-b a single shot record of data is illustrated. The data are
created using the CREWES acoustic finite difference function
afd_shotrec.m, with all four boundaries set as “absorbing” to suppress
the creation of free-surface multiples.

In Figure 2a we pay particular attention to the two primaries, whose
zero offset travel imes are indicated in yellow.

In Figure 2b we pay attention rather to the two internal multiples that
(while dim) are visible in the data.

The zero offset travel times of these events are indicated in red. Our
objective is to use the primaries as subevents to predict these two
multiples at all offsets.
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Figure: 2. Synthetic data calculated using the synthetic model in Figure 1. The
CREWES code afd_shofrec.m was used to create the data. (a) Primary zero offset
travel times are indicated in red. (b) Multiple zero offset travel times are indicated in
yellow.
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Algorithm input

In Figure 3 we illustrate the construction of the core input to the
prediction algorithm, b¢(ky, z). Note it is constructed for positive kg
values only—Ilater through conjugate symmetry the negative
wavenumbers are filled. Although difficult to interpret, at low k, the
arrival times of the two primaries are visible.
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Figure: The algorithm input b1(ky, z) is generated using the input data and the single
reference velocity cg.

Predicting internal multiples

We finally input the constructed b4 matrix into the prediction algorithm.
The results, after a 2D inverse Fourier transform, are displayed in
Figure 4. In Figureda the prediction is displayed to match with a clipped
version of the input data in 4b. The zero offset travel times and moveout
patterns of the internal multiples are captured in the prediction. A range
of artifacts and edge effects are visible also, which are matters of
ongoing consideration.
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Figure: The output of the 1.5D internal multiple prediction. (a) The prediction, in which
two multiples are predicted. (b) The original data with both primaries and internal
multiples.

Conclusions

We implement a 1.5D MATLAB version of the inverse scattering series
internal multiple algorithm developed by Weglein and collaborators In
the 1990s. Our plan forward is to apply with the 1.5D algorithm the
methods developed by Hernandez for the 1D algorithm (this report),
which involve stepping from synthetic, to laboratory, and finally to land
data.

Areas that require further study include examining the use of tapering
for aperture effects, moving from a linear to a sinc interpolation scheme
during the construction of b4, and a survey of the response of the
algorithm to missing traces and irregular data.
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