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Overview

This work is a summary of highlights from the 2012 MSc thesis of the
first author, which aims to bridge the gap between the development of
accurate physical models and the implementation of modern numerical
techniques for the accurate solutions of partial differential equations.
We apply state-of-the-art numerical methods based on
domain-decomposition combined with local pseudospectral spatial
discretization, to three physically realistic models of seismic waves, Iin
acoustic, elastic, and viscoelastic media.

Galerkin method

The Galerkin method seeks to find a solution u to differential equation
[[u] = f as a linear combination of basis functions ¢,

U= Z a,-gb,-.

The measure of the residual R[u] = L[u] — f should then be zero, thus

/R[u]gb,- dx = 0, for all j,
()

> a / L[¢i]o; dx = / f¢; dx, for all j.
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For certain problems, this is a Rayleigh-Ritz minimization technique.
It reduces to a large N-dimensional system of equations to be solved,

Ka =1t.

For the time evolution of a wave propagating through a medium, time
and space are treated separately. A large system of ODEs results,

Mu+ Ku=0,t>0,
u(0) = uo,
U(O):: U,

where M is the called the mass matrix, and K the stiffness matrix.

Nodes

The basis functions and their derivatives/integral are determined by
values at nodes in the domain. For optimal performance, the nodes are
not on a uniform grid, but based on a selection of Gauss-Lobato points.
It can be advantageous to select a clustering of grid points near
boundaries and interfaces.
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A sample 2D grid of nodes for Galerkin.

A good selection of grid points avoids the Runge phenomena and leads
to higher accuracy with fewer grid points.
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Wave Equations

The elastic wave equation is expressed with a vector valued
displacement function u and forcing function f. The differential system is

) e, .
/O(X)U,’(x,t)zj:a—xj()'jj(U)—l—fj xeQt>0i=1,....d,
where the stresses for the isotropic medium are
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with A, 1 the elastic parameters for the medium.

In the viscoelastic case, the material response for stresses becomes
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where X, 1/ are additional viscoelastic parameters.

Elastic solutions

A nodal Galerkin method is compared to second and fourth order finite
difference methods on a 501 by 501 node grid. A forcing term with
Ricker wavelet time-component and conservative spatial component is
used to propagate a 15 Hz wavelet in a 4500m square bipartite medium
with properties p = 2.064g/cm®, V, = 2305m/s, Vs = 997m/s in the
first layer, and p = 2.14g/cm®, V,, = 4500m/s, Vs = 2600m/s in the
second layer.
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2nd order FD, 4th order FD, Galerkin solutions.

The figures show the norm of the displacement for the three models
propagated to one second and then normalized and clipped to
exaggerate the dispersion effects.

Galerkin and Finite
Difference

The above numerical solutions are compared at time t = 1, near
different regions in the domain.
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Comparison of waveforms at smooth, and abrupt interfaces.

The amplitude error associated with the second-order stencil is
apparent, as is the dispersion of all three methods near a jump. Note
the ringing that is apparent for both finite difference results.
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Viscoelastic solution

A demonstration of the Galerkin method used with accurate physical
models is given. Left and right show wave propagation of a single
impulse through a two-layer elastic medium and through a two-layer
viscoelastic medium with damping parameters Q, = 24, Qs = 16. Note
physically relevant effects: of wavelength broadening with propagation.
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Propagation in 2-layer elastic, viscoelastic media.

Conclusions

A Galerkin method is a feasible and computationally efficient method for
the numerical modelling of several types of seismic waves. Also in the
thesis is the treatment of numerically imposed boundaries and
interfaces using the weak form of the dynamic equilibrium equations.
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