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AVO responses of P-P wave for thin bed

with no attenuation || AVO responses for thin bed with attenuation
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As effective criteria for hydrocarbon detection, Amplitude Versus Offset
(AVO) technology has been widely used in the recent years. Zoeppntz%
equation, which describes the reflection and transmission of plane wave on a§
single interface separating two half infinite spaces, i1s the basis for trad1t10na1;é
'AVO analysis. This characteristic of Zoeppritz equation makes it unsuitable t0§
analyze the propagation of wave in multi-layered media when the layers are:§§
very thin. This study derives the three-layer media equation based on mult1-§
layer media equation by Breshkovsky in elastic regime for discussing the§
reflection and transmission of plane wave in thin bed. The reflection|
coetticient equation 1s a continuous function of incident angle, frequency and

thin bed thickness.
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Figure 5. P-P Wave absolute reflection coefficients spectrum (n = 6) foré
different Q (5,10,20,30,50,100) for Model I with water sand (a) and gas sand
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It 1s concluded that: (1) three-layer media equation 1s more quantitative and Figure 2. P-P Wave absolute reflection coefficients spectrum (frequency=30Hz) for different n = A/d
precise than Zoeppritz equation to analyze the AVO responses of thin bed; (2) from 1 to 20 for Model I with water sand (a) and gas sand (b) at full angles. The dashed line is |

the influence of thin bed thinning on variations of amplitudes is equal to that of calculated by Zoeppritz equation and other lines are calculated by three-layer media equation. | (b) in Layer 2.
dominant frequency decreasing; (3) AVO analysis of P-S wave helps us to |
ehmlnate the prOblem Of mU.ltl-SOlU.thHS in ﬂlllds predICtIOH; (4) Wlth (a) Absolute Amplitude Spectrum (20 degree) (b) Absolute Amplitude Spectrum (50 degree) | i | | i — : Iz —————— — e | | | I T | ] T |
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Figure 1. Three-layer media model Comparison of AVO responses for thin bed in elastic and acoustic regime Conclusion

Figure 1 show the three-layer model used in this research. The target layer
(Layer 2 shown 1n Figure 1) 1s embedded between two infinite half spaces.
And a plane harmonic and compressional wave illuminates on Interface 1,
‘which causes the reflected compressional wave (P-wave) and shear wave (only
SV-wave 1s considered here), transmitted compressional wave and shear wave.
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. 'The three-layer media equation derived in

his study describes the propagation 0f5
eismic wave in layered-media. Even
hough we don’t derive the direct
xpression of retlection coefficients or its |
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y and Algorithm

'more suitable and precise than Zoeppritz |
‘equation to analyze the AVO responses of |
‘thin bed with varying the incident angle,
[requency and thin bed thickness 1n elastic |
‘regime.

Breshkovsky (1960) analyzed the propagation of plane wave in multi- layered
and elastic media and built the multi-layered media equation. Here, the multi-
layer model 1s simplified to three-layer model. This equation connects the
displacement of stress of layer 1 and layer 3 through one coefficients matrix.
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functions of incident angle 6, dominant frequency f and target thin layer
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thickness d. It is easier for us to study the influences of frequency and thin 1 — L. f — e |
; ] .
layer thickness to amplitudes comparing with Zoeppritz equation. | Incident Angle (Degree) ncident ,e.ng|e Degree incident Angle (Degree) ‘The sponsors of CREWES and Dr. Kris
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RPP(GJJCJ d) = :tl;;p' Rps(9 fid) = detV’ PP(Q'f’d) : ;p' TPS(G'f'd) = detv

' Figure 4. P-P and P-S wave absolute amplitude spectrums with varying incident angle and thickness/wavelength (1/n) at fixed
| frequency (30Hz) for Model II with water sand ((a), (b), (¢)), gas sand ((d), (e), (f)) and coal (h), (1), (j)) n Layer 2 1n elastic regime
- and acoustic regime respectively. The color represents normalized amplitude.
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Even though, we don’t derive the direct expression of reflection coefficient or |
its lincar approximations. We can still analyze the variations of amphtudes
with varying incident angle, frequency and thin bed thickness in elastic regime. |
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