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ABSTRACT
A method for calculation of internal boundary conditions, as opposed to edge boundary
conditions, is explained. The method of minimizing energy within the rigid zone below a water
bottom is developed, and the sequence of matrix equations required is presented in some Xy Xy X X X 1] 14l
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iz-1 == == == == == the center results from multiplying the two matrices of Figure 3, and there is now room to display the two displacement
vectors to complete the equation.
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Figure 1: The displacements in the vicinity of the green line depicting the water bottom. It is assumed that at this point SRS P P T e by P e T e S T
within a time step, all the Z-displacements have been calculated, and also all the X-displacements above and for one AN X, FByXoXy A, XX (SRR + 8. XX,  +8..X
sample below the water bottom and lower. The X-displacements just below the water bottom must then be made A Ty Ty [Fa YAk g

consistent with the appropriate boundary conditions.

Figure 5: The energy sum of Figure 4 must be differentiated with respect to each X variable to get the value where the
; energy is minimum. Only the highlighted terms contribute to the particular derivative equation in X,,.
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Figure 2: An abbreviated version of a matrix equation which shows how the Ux displacements immediately below the
water bottom contribute to the shear and compressional stresses within the water bottom. The X vector specifies input

displacement strains. Outputs f, through f. represent shear stresses, and f; through f,, represent compressional stresses. Figure 6: The equation which results by substitution of the particular terms into the general terms of Figure 5 and by

translation back into matrix format. The matrix is essentially identical to the original core matrix in Figure 4 because of the
symmetry of the off diagonal terms. Since the X’s are the unknowns, the matrix must be inverted.
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Figure 3: The components of the Toeplitz energy matrix. The matrix from Figure 2 is transposed and appears on the left of
this Figure. The matrix on the right has the same form as the one in Figure 2, but the elastic constants are replaced by a +1
or -1, so that it may calculate displacements instead of stresses.
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