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m Preliminary Testing Application: MW Imaging

* Problem: Signals that form microwave (MW) image
exhibit severe frequency-dependent attenuation -
X Wavelet distortion - Nonstationarity

X Lack of resolution in image
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A example of wavelet distortion at different travel times

* Method: Gabor Nonstationary Deconvolution (GND)
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* Alocal analysis scheme based on time-frequency
decomposition

* Constant Q theory - Hyperbolic smoothing

* Objective: Determine effectiveness of GND for MW

sighals propagating through biological tissues regarding

? Q characterization appropriate for MW signals

? High attenuation and dispersion

? Impact of frequency-dependent Q
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* Small Q between 1.5 and 8.
 Q* approximated as constant
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* Nonstationary example of GND
v Result 1,2,3 - more effective than Wiener
deconvolution.
v/ Result 1,2 - insensitive to frequency-dependent Q.

Simulation of Plane Wave Propagation

* Challenging features of model:
* Layers 2&3 high attenuation and dispersion
* Low contrast at interfaces 2&3
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Case 1 (top): Mild loss and dispersion. Case 2 (bottom): High loss and dispersion.
Blue “*’ represents interfaces 1 to 3.
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* Gabor deconvolution as preconditioning for imaging
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TSAR MW imaging system Structure of lossy dispersive

for breast tumor detection phantom
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Example signal analysis. Black ‘*’ corresponds to inclusion
centre location in signal.
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v GND - Better localization of scattering object, reduced
smearing of the reconstructed response

Conclusions

* Hyperbolic smoothing is insensitive to Q frequency-dependency.

* EM wave attenuation can be characterized by a constant Q*
model.

* Results demonstrate GND is effective for media with high loss
and high dispersion.
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