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FWI with Hussar dataset

® Surface location of well site

Figure 1. The 4.5 km Hussar seismic line is shown together
with the locations of 5 wells with good logging suites, shot
point locations, and the location of the recorders.
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Figure 2. (a), (b) and (c¢) show the inversion results at 4th, 6th
and 10th 1terations. (d), (¢) and (f) show the reverse time
migration images using the corresponding inverted models

Source-independent Hessian-free Gauss-Newton FWI

The estimation of source wavelet is important for successtul
implementation of full-waveform inversion (FWI). Many
FWI algorithms estimate the source signature iteratively in
the inversion process. In this paper, a source-independent
method 1s adopted with a data calibration process.
Furthermore, the gradient-based methods for FWI sufter
from slow local convergence rate. A Hessian-free (HF)
Gauss-Newton method i1s implemented in this research by
solving the Newton system with a conjugate-gradient (CG)
method. With the source-independent strategy, the Gauss-
Newton Hessian is also modified. We demonstrate with
numerical examples that the HF Gauss-Newton method with
the modified Hessian can improve the convergence rate and
reduce the computational burden.

The FWI misfit function with source weight 1s expressed as:
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where the source weight 1s obtained as:

2 _x, Gobs (Xs, Xg, w) d, (X, Xy, W)
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The Jacobian matrix 1s expressed as:

e

J (Xs,Xg, w)
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The gradient and Hessian can be written as:
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Figure 3. The convergence history of different methods.

FWI1 in the frequency-ray parameter domain

Forward modelling in frequency-ray parameter domain:

The slant gradient with ray parameter p 1s expressed as:

gx,p) =) > ¥ ¥ R( fi(w)G (x,%,,w) G* (%, X, w) Ad* (x,, X, w)

x A (w‘) eXb (iwp(xs — X5))) ,
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Figure 4. (a) Mono-frequency slant update with p = -0.01
s’/km; (b) Mono-frequency slant update with p = -0.03 s/km;
(¢) Mono-frequency random slant update; (d) Partial overlap-
frequency random slant update (€= 0.4862); (¢) Mono-
frequency sequential slant update; (f) Partial overlap-
frequency sequential slant update (€ = 0.4596).
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Figure 5. (a) Stacking Np=7 (mono-frequency); (b) Stacking
Np=7 (overlap); (¢) Stacking Np=11 (mono-frequency); (d)
Stacking Np=11 (overlap);(e¢) SP (mono); (f) SP (overlap).
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