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Summary

The gradient-based methods for FWI promise to converge
globally but suffer from slow convergence rate. The Newton-
type methods provide a quadratic convergence, but the
computation, storage and inversion of the Hessian are beyond
the current computation ability for large-scale inverse problem.
The Hessian-free (HF) optimization method represents an
attractive alternative to these above-mentioned optimization
methods. At each iteration, it obtains the search direction by
approximately solving the Newton linear system using a
conjugate-gradient (CG) algorithm with a matrix-free fashion.
One problem of the HF optimization method 1s that the CG
algorithm requires many iterations. The main goal of this paper
is to accelerate the HF FWI by preconditioning the CG
algorithm. In this research, different preconditioning schemes
for the HF Gauss-Newton optimization method are developed.
The preconditioners are designed as Hessian approximations
(e.g., diagonal pseudo-Hessian and diagonal Gauss-Newton
Hessian) or its inverse approximations. We also developed a
new pseudo diagonal Gauss-Newton Hessian approximation
for preconditioning based on the reciprocal property of the
Green's function. Furthermore, a quasi-Newton $I1$-BFGS
inverse Hessian approximation preconditioner with the
diagonal Hessian approximation as initial guess 1s proposed
and developed.

Preconditioning

One problem of the CG iterative algorithm is that it requires
many Iterations when obtaining the approximate solution of a
linear system Wx=b. The convergence rate of the CG method
depends on the spectral properties (e.g., its eigenvalues) of the
coefficient matrix W. It is often convenient to transform the
equation system into a system that has the same solution but
has more favorable spectral properties. This can be achieved by
applying a suitable preconditioner M on the linear system.
Thus, the preconditioned Newton system for the HF Gauss-
Newton FWI is given by:

M (B + ed) Amy = Mg,

The preconditioner for the CG method 1s always devised to
approximate the Hessian or the inverse Hessian. We first
consider the traditional Hessian approximations (e.g.,
diagonal pseudo-Hessian and diagonal Gauss-Newton
Hessian) as the preconditioners for the CG inner iteration.

We also develop an L-BFGS preconditioning scheme for the
HF optimization method, namely the L-BFGS-GN method.
Furthermore, the L-BFGS preconditioner 1s constructed with
the diagonal Hessian approximations as initial guess.

Hessian-free Gauss-Newton FWI

The Hessian-free optimization method (truncated-Newton or
inexact-Newton method) represents an attractive alternative to
the traditional optimization methods. At each iteration, the
search direction 1s computed by approximately solving the
Newton equations through a matrix-free fashion of the
conjugate-gradient (CG) algorithm:
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This linear iterative solver only requires computation of the
Hessian-vector products instead of forming the Hessian
operator explicitly. In this paper, the full Hessian is replaced
with the Gauss-Newton Hessian, which 1s always symmetric
positive definite. One problem of the HF optimization method
is that obtaining the search direction approximately requires a
large number of CG i1terations. Our main goal in this paper 1s
to precondition the CG algorithm for reducing the CG
iterations and accelerating the HF Gauss-Newton full-
waveform inversion.

Stopping Criteria

Newton's method 1s based on the Taylor series approximation.
If this approximation is inaccurate then it may not be suitable
to solve the Newton equations accurately and "over-solving"
the Newton equation will not produce a better search direction.
The CG algorithm should be terminated with an appropriate
stopping criteria:
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where } indicates the CG inner iteration index. The inner
iteration 1s stopped when v < Ymin , Where min 1ndicates the
relative residual tolerance.

Numerical Results
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Figure 1. (a) SD method; (b) L-BFGS method; (¢) and (d)
are the well log data comparison.
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Figure 2. (a) GN-CG method; (b) L-BFGS-GN method; (¢)
DPH-GN method; (d) L-BFGS-GN-DPH method.
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Figure 3. (a) PDGH-GN method; (d) L-BFGS-GN-PDGH
method; (¢) and (d) show the well log data comparison.
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