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Abstract	
We	begin	with	a	brief	introducPon	into	the	concept	of	
instantaneous	frequency,	where	we	use	the	complex	
analyPcal	signal	to	obtain	the	Pme	dependent	signal	phase,	
and	differenPate	the	phase	with	respect	to	Pme	to	obtain	the	
instantaneous	frequency.	We	reformulate	our	problem	into	a	
weighted	least	squares	Tikhonov	regularizaPon	with	box	
constraints,	and	explain	the	advantages	of	the	added	terms	in	
helping	to	smooth	and	stabilize	our	results.	We	conclude	with	
some	simulaPon	results	and	compare	the	proposed	algorithm	
results	with	a	well-established	Pme-frequency	distribuPon	
method.	

Theory	
Gabor’s	analyPcal	signal									for	a	real	signal								and	its	Hilbert	
transform																.		
	
We	can	use	the	analyPcal	siganl	to	find	the	instantaneous	
angular	frequency									.	
	
	
ReformulaPng	(2)	into	matrix	format.	
	
	
For	most	real	data,	matrix	A	is	ill-condiPoned	(high	raPo	
between	smallest	and	highest	eigenvalue),	and	the	
measurement	vector	b	is	highly	contaminated	with	noise.	
To	solve	these	problems	we	use	three	approaches.		
1.  Weighted	Least	Squares	Approach:		
We	reformulate	our	problem	into	a	weighted	least	squares	
minimizaPon	problem	with	the	following	general	soluPon.	
	
	
	
2.  Least	Squares	Tikhonov	Regulariza@on	Approach:		
We	add	a	regularizaPon	term	and	reformulate	our	problem	to	
obtain	the	following	soluPon.	
	
	
	
	
3.  Box	Constraints	
Adding	a	box	constraint	as	quadraPc	term	with	a	penalty	matrix	
					as	follows.	
	
	
		
We	obtain	the	opPmal	value	for					by	solving	the	problem	in	a	
loop	unPl	the	constraints	are	saPsfied.	
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z(t) = f (t)+ H[ f (t)] = f (t)+ ig(t). (1)	

(2)	

(3)	

Cb = diag[ var iance( noise ) ]
ATCbA ω̂ = ATCbb (4)	

(5)	

(ATA +Cx ) ω̂ = ATb

Cx =α W, Where α = [var (noise)
(Δt)2

]1/3 ,

W = Second Order Difference Matrix
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(ATA +Cε ) ω̂ = ATb +Cεω
Cε

Cε = ε diag[ (ωmax −ωmin )
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Monocomp-
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Using	(3)	compute:	
1-								Matrix.		
2-							Vector.		

Using	(5),(7)	&	(9)	compute:	
1-								Matrix	
2-								Matrix		
3-								Matrix.	
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Combining	all	three	approaches	
By	combing	all	three	approaches	we	obtain	a	weighted	least	
squares	Tikhonov	regularizaPon	with	box	constraints	minizaPon	
problem,	with	the	following	soluPon,	
	

	
Conclusion	
In	this	report,	we	toke	a	simple	least	squares	minimizaPon	
problem	and	enhanced	it	using	three	methods.	
1.  Weighted	least	squares.	
2.  Tikhonov	regularizaPon.	
3.  Box	Constraints.	
Using	the	proposed	algorithm	we	were	able	to	take	quarry	blast	
data	that	was	heavily	corrupted	by	noise	and	esPmate	the	
instantaneous	frequency	and	obtain	an	accurate	pick	for	the	P	
and	S-wave	onset.		

(ATCbA +Cx +Cε ) ω̂ = ATCbb +Cεω

ε
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