
Everything you never wanted to know about IBM and IEEE floating point numbers
Kevin W. Hall*

kwhall@ucalgary.ca

ABSTRACT
The CREWES Matlab® toolbox SEG-Y I/O

functions have long been able to read IBM
floating-point, but have not been able to
differentiate between IBM and IEEE trace data.
This was left to the user. In addition, it was not
possible to write IBM floating point SEG-Y files
using the CREWES tools, which may be desirable if
a user needs to import data into legacy software.
Functions num2ibm() and ibm2num() have been
written, tested, and are now available in the
toolbox for writing IBM floats.

Four-byte IBM floating-point can store both
smaller and larger numbers than Four-byte IEEE
floating-point. Figure 1 shows the results of
reading sinusoids of various amplitudes stored on
disk as IBM into Matlab doubles (eight-byte IEEE)
using ibm2num(). Figures 2-4 show the results of
reading the same sinusoids into three commercial
seismic processing packages. If numbers larger or
smaller that can be stored in four-byte IEEE must
be stored, I recommend using eight-byte IEEE and
SEG-Y revision 2.

SEG-Y revision 0 allowed trace data to be stored
as four-byte IBM floating point with the data
format code in the binary file header set to 1. As
time went on people began to write SEG-Y files
using four-byte IEEE floating-point, but continued
to use format code 1. This lead to ambiguity when
it came time to read these files. Figures 5-8 show
the (normalized) consequences of choosing the
wrong floating-point format when reading seismic
data.

Figure 9 shows a 3C Vibroseis source gather that
has been stored using IEEE floating-point, but read
into Matlab assuming the data is IBM floating-
point. Figure 5 shows a single trace from this
gather. Visually, it is difficult to tell that something
is wrong at this scale. Converting this result to IBM
and back to IEEE and subtracting gives the gather
shown at the top of Figure 10. The trace-by-trace
sum of the differences is shown at the bottom.
None of these numbers are exactly zero. If the
data on disk was actually IBM floating-point and is
correctly read as IBM, this difference plot would
be all zeros (not shown). readsegy() in the CREWES
Matlab toolbox now uses this observation to guess
if data on disk are IBM or IEEE floating point.

Why does this happen? While the IEEE fraction
is always stored using 24 bit precision, an IBM
fraction can be stored using anywhere from 21 to
24 bits. Figure 11 shows the precision with which
the IBM fraction is stored for the amplitudes
shown in Figure 9. Figure 12 shows that, in this
case, roughly one-quarter of the data is stored
with each precision. As expected, IBM numbers
stored using the fewest bist for the fraction show
the greatest variances from the IEEE numbers
before conversion.

1

www.crewes.org

FIG. 5. Correlated Vibroseis data acquired with a 10-250 Hz sweep stored as
IBM (top) and IEEE (bottom) floating point, that has been read into memory as
IBM (left) and IEEE (right). Trace amplitudes have been normalized for
comparison, but no other processing has been applied. Correct answers are
shown in green.

FIG. 6. Amplitude spectra corresponding to the traces shown in FIG. 5.

FIG. 7. Dynamite data stored as IBM (top) and IEEE (bottom) floating point,
that has been read into memory as IBM (left) and IEEE (right). Trace
amplitudes have been normalized for comparison, but no other processing has
been applied. Correct answers are shown in green.

FIG. 8. Amplitude spectra corresponding to the traces shown in Figure 7.

-80 -79 -78 -77 -76 -75 75 76 77 78 79 80 -40 -39 -38 -37 -36 -35 37 38 39 40 41 42

Sa
m

pl
e

0

2000

Sinusoids Scaled by Power of 10

IBM_MIN=5.4e-79 IBM_MAX=7.2e75 IEEE_MIN=1.2e-38 IEEE_MAX=3.4e38

Matlab;32-bit IBM
converted to double

FIG. 1. Red ovals highlight artifacts at values between 0.0 and IBM minimum,
and red rectangles highlight artifacts at values greater than IBM maximum. This
plot shows that ibm2num() correctly converts 4-byte IBM amplitudes to 8-byte
IEEE.

Sa
m

pl
e

0

2000

Sinusoids Scaled by Power of 10

IBM_MIN=5.4e-79 IBM_MAX=7.2e75 IEEE_MIN=1.2e-38 IEEE_MAX=3.4e38

-80 -79 -78 -77 -76 -75 75 76 77 78 79 80 -40 -39 -38 -37 -36 -35 37 38 39 40 41 42

Seismic software
A

FIG. 2. This plot shows that Seismic software A correctly converts 4-byte IBM
to 4-byte IEEE floating point.

Sa
m

pl
e

0

2000

Sinusoids Scaled by Power of 10

IBM_MIN=5.4e-79 IBM_MAX=7.2e75 IEEE_MIN=1.2e-38 IEEE_MAX=3.4e38

-80 -79 -78 -77 -76 -75 75 76 77 78 79 80 -40 -39 -38 -37 -36 -35 37 38 39 40 41 42

Seismic software
B

FIG. 3. This plot shows that Seismic software B does not correctly convert
large or small 4-byte IBM amplitudes to 4-byte IEEE floating point.

Sa
m

pl
e

0

2000

Sinusoids Scaled by Power of 10

IBM_MIN=5.4e-79 IBM_MAX=7.2e75 IEEE_MIN=1.2e-38 IEEE_MAX=3.4e38

-80 -79 -78 -77 -76 -75 75 76 77 78 79 80 -40 -39 -38 -37 -36 -35 37 38 39 40 41 42

Seismic software
C

FIG. 4. This plot shows that Seismic software c does not correctly convert
large or small 4-byte IBM amplitudes to 4-byte IEEE floating point.

FIG. 9. Real data stored as little-endian IEEE floating point and read incorrectly
into Matlab as IBM floating point with readsegy() and displayed using
plotimage().

FIG. 10. Data shown in Figure 11 after conversion to IBM and back, subtracting
from the data shown in Figure 9 and displayed using plotimage(). The
cumulative error (sum of amplitude differences) per trace is displayed across
the bottom.

FIG. 11. Number of leading zeros in the most significant 4-bits (nibble) of the
IBM floating-point fraction. Zero leading zeros means the fraction is stored with
24-bit precision. Three leading zeros means the fraction is stored with 21-bit
precision.

FIG. 12. Sum of amplitude differences plotted against the number of leading
zeros in the most significant 4-bits (nibble) of the IBM floating-point fraction.

1) Large and Small Numbers 2) Data Read Using Incorrect Floating-Point Format 3) Is SEG-Y Data IBM or IEEE Floating-Point?

	Everything you never wanted to know about IBM and IEEE floating point numbers�Kevin W. Hall*�kwhall@ucalgary.ca

