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Distributed acoustic sensing (DAS) uses optical ; ~ » .. &
fibres to provide measurements of seismic strain. | — = § o

A lingering question is how to best utilize the data

provided by DAS to estimate subsurface @99) il I v - =i I
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function and gradient that allows for the inclusion Figure: Helical fibre (a), and its sensitivty 10 e (b), exz (C), and e (d). g o0 . : o g
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The response of DAS fibre to a 2D strain field can . 4 (polumn 3) fqr reflection geophope data (a)-(q), stra.in data from.a 10 degree helical
L " L fibre in a horizontal well (d)-(f), simultaneous inversion of reflection geophone data
be expressed dsS, ; ; ; and strain data from a 10 degree helical fibre in a horizontal well (g)-(i).
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where t is the fibre tangent. Our goal is to include - 9 U, 0 o
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The FWI objective function seeks to find a Sao— N, i i
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Figure: Fibre scattering radiation patterns for v, (column 1), vs (column 2), and p
between mOdeIed data U and Observed data d’ (column 3) for 70.5 degree (a)-(c), 35.2 degreep(d)-(f), and 10 degree (g)-(i) helical
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The gradient of equation (2) is given by, B j O | | | |
Figure: True models from a portion of the Marmousi2 model for p, v, and vs in (a)-(c),
inversion results using only geophones p, v, and v;s in (d)-(f), and inversion results
(d) : () : | M . using a fibre in a horizontal well and surface geophones for p, v, and vs in (g)-(i).
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where R is a matrix that handles receiver 00 B 200 ... J s ata, that can also incorpate geophone data
sampling. In our method this matrix is i:ggg Y'.s 3000 g || re00 1400 for a simultaneous inversion of both datasets.
reformulated to handle properties of DAS R —— . i . Investigated the role of the wrapping angle of
receivers, computing the data in equation (1), X[ helical fibres on inversion results.
allowing for the simultaneous inversion of Figure: Inversion results from a toy model for v, (column 1), vs (column 2), and p . Simultaneous inversion of geophone and DAS
(column 3) for 70.5 degree (a)-(c), 35.2 degree (d)-(f), and 10 degree (g)-(i) helical . _ _
geophone and DAS data. fibres. data supplies improved parameter estimates

over using either dataset alone.
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