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Conclusions

Sensitivity analysis

Earth can be modeled as an LTI system, and the seismic recordings 
follow the convolution theorem.

Deconvolution aims at removing the wavelet from the seismic data.

Blind deconvolution aims at estimating the wavelet and reflectivity 
series simultaneously.

Blind deconvolution is an ill-posed and under-determined problem.

Total Least Squares (TLS) is a type of linear regression that solves 
for a fully perturbed linear model.

TLS does not provide consistent estimators when the problem at 
hand is ill-posed and under-determined. 

TLS does not consider structured matrices in its formulation.

TLS does not consider sparsity in the coefficients.

More constraints are needed to make the algorithm suitable for real-
world applications.

Aims:

Developing a promising single channel blind deconvolution 
algorithm based on TLS method.

The proposed algorithm should be automatic and preserve the 
small amplitude reflections in the reflectivity series.

The algorithm should model and handle the noise component 
properly.

The algorithm should not be confined to minimum phase wavelets.

Motivations:

TLs is a promising algorithm; however, in real-world applications, it 
usually performs poorly.

Structured TLS assumes that the data matrix has some structures 
and results in reducing the model domain (number of unknowns).

Structured TLS does not consider sparsity of the reflectivity series 
and results in poor estimation when the signal of interest is a 
sparse series.

Assumptions of the proposed algorithm:

No phase assumption about the wavelet.

Toeplitz structure of the convolutional matrices.

Noise is Gaussian.

The desired reflectivity is a sparse series. 

Aims and Motivations

Seismic recordings can be written as

Assume that we have an initial estimate about the wavelet
or

In other words, the data can be cast as 

Now, TLS solves 

Considering Toeplitz structure for the wavelet, we solve the Structured TLS as

Structured TLS is more efficient than TLS  in solving the blind deconvolution
problem; however, it does not take advantage of a priori information about the
reflectivity series (i.e., sparsity). 

We propose to solve 

To solve the problem efficiently, we expand the proposed cost function around      
and

and, by ignoring the small terms, we get

where                         and                        .     

We solve the mentioned above cost function using an alternating minimization 
algorithm. 

• We developed an efficient and reliable single channel bind deconvolution technique.

• The proposed algorithm is based on Total least squares method.

• There is no assumption about the phase of the wavelet.

• The algorithm is equipped with sparsity constraint on the reflectivity series and preserves the 
Toeplitz structure of the perturbed data matrix for the wavelet estimation part.

• The proposed method simultaneously recovers the reflectivity series and the wavelet without 
compromising the small amplitude events in the case of seismic recordings with high SNR.

• The proposed algorithm is successfully applied on real data.
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w = w0 +wpurt W = W0 +E

d = (W0 +E) r+ n,

{r̂, Ê} = argmin
r,E

||d� (W0 +E) r||22,

{r̂, Ê} = argmin
r,E

||d� (W0 +E) r||22, s.t. E r = R wpurt

{r̂, Ê} = argmin
r,E

J(r,E) = argmin
r,E

||d� (W0 +E) r||22 + �||r||1,

s.t. E r = R wpurt

rwpurt

wpurt{�̂r, ˆ�wpurt} = argmin
�r,�wpurt

J(r+�r,wpurt +�wpurt)

s.t. E r = R wpurt

{�̂r, ˆ�wpurt} = argmin
�r,�wpurt

||res�R �wpurt �P �r||22 + �||r+�r||1

P = W0 +E res = d�P r
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Noise free example: 

Left) Estimated reflectivity, Middle) Spectrum of the estimated reflectivity, and Right) 
Estimated wavelet and its corresponding Kurtosis.

Generalized cross validation score.

Sensitivity of the algorithm to regularization parameter.

Noisy data:                   and

Left) Estimated reflectivity, Middle) Spectrum of the estimated reflectivity, and Right) Estimated wavelet and 
corresponding Kurtosis.
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a) Mean and standard error of normalized correlation coefficients versus SNR. (b) Mean and standard error of the quality 
of the reconstruction versus SNR. These results were obtained by running a Monte Carlo simulation on 1000 traces with 
reflectivity series consist of left) 25, middle)  50 and right) 75 coefficients.
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Background Methodology

Parameter selection:
The main parameter is    .

We use Generalized Cross 
Validation method and pick the 
optimal value of     as a minimizer 
of  

We fix              and             .

Step 2 is a least squares problem 
and has a closed form solution.

Steps 1 and 3 are L2-L1 problems. 
We use FISTA algorithm to solve 
these steps. 

Synthetic Examples

Synthetic Examples
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t = 1.03 sInline = 110 Xline = 146
3D post-stack data:
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