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ABSTRACT

Seismic sections or slices resulting from the processing of 3-D data can often be
enhanced by the application of various filters. This study investigates the design and use of
3-D f-k filters operating on the post-stack data volume. In particular the results of a one-
pass true 3-D filter are compared with those realized from two perpendicular passes of a 2-D
filter. In principle, given a specific velocity (dip) reject range, the basic two-pass 2-D filter
and a one-pass 3-D filter have a different response. In fact, filtered synthetic data show that
the two-pass filters do not provide axially-symmetric results; greater dips are passed at 45 °
to the filtering directions. The one-pass 3-D filter does provide axially symmetric results.
This study also compares a mean and median implementation of the 3-D f-k filter. The
application of the mean filter results in a more smoothed image than use of the median-based
filter. In cases where 3-D edges (faults) should be preserved or where the data are
particularly noisy, the median design may be more desirable.

INTRODUCTION

The acquisition and processing of 3-D seismic data is an expensive but increasingly
common procedure (Robertson, 1989). Remarkably accurate and useful geologic images
have been generated from these data. The quality of these images is due, in part, to the
more realistic assumptions made in processing (e.g. 3-D Earth and wave propagation). In
addition, if some further knowledge about the subsurface is known, say that the range of
dipping beds is limited, then it may be desirable to reject any events on the seismic sections
which have dips greater than this limited amount. Velocity or f-k filters have proven to be
quite useful in this regard for 2-D enhancements. Two-dimensional f-k filters have been
known and used for some time (Embree et al., 1963; Yilmaz, 1987). While 3-D filtering
concepts have also been presented (Burg, 1964; Hubral, 1972), they do not appear to have
been extensively developed. It seems reasonable, however to attempt to use a 3-D data
volume for noise attenuation just as a 3-D data volume is useful for migrating diffractions.
This study analyses the design of a basic conical, dip rejection filter. Can we use a two-
pass 2-D f-k filter or should we use a one-pass 3-D filter? We also introduce the concept of
a 3-D median f-k filter. Instead of multiplying and summing filter coefficients and data
points to find the output point, the median filter selects the f-k weighted median point as the
output of the moving data volume. The standard or mean f-k filter is compared to the
median filter on field 3-D seismic data.

METHODS

We conceive of a 3-D filter which will reject all events (linear, planar) that have dips
outside a certain design range (Figure 1). This filter in the time-space domain (t, x, y) or
frequency-wavenumber domain (w, kx, ky) will again, symmetrically reject events with
lowvelocities (say less than V L ).
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FIG. 1. Conical pass and reject regions of a 3-D filter.

One pass versus two pass

In the frequency domain, a true 3-D filter F would have an expression as

S(w,kx,ky} = F(w,kx,ky) s(t,x,y}e-i(wt+k.x+k,Y)dtdxdy
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but a basic two-pass 2-D filter would have an expression as

S'(w,kx,ky ) = F'"(w,ky) F"(w'kx) .__I"'ff s(t'x'y)ei(wt+k'x)dtdx e-ikyYdY

or S'(w,kx,ky)= F'(w,kx,ky) Ii '[f s(t,x,y,)e-i(wt+kxx+k,y)dtdxdy

where F'(w,kx,ky) = F"(w,kx). F '"(w,ky) ,

!

F"(w,kx) = ! 1 w/kx > VL
/ 0 w/kx -<VL

1 >V L

F'"(w,kx) = W/ky
0 w/ky < VL

But F' has a pyramidal pass zone while F has a conical pass zone (Figures 2a and 2b).

351



1,t _-2nd pass
kx

F (w, kx, k W

ky

ky /'/

W

kx
Pass

W

FIG. 2. (a) Schematic diagram in f-k space of a two-pass 2-D filter,
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FIG. 2. (b) Schematic diagram in f-k space of a one-pass 3-D f-k filter.

To test these theoretical results, we built a 3-D computer model with a hemispherical
anomaly (Figure 3a). The maximum dip of the flanks of the hemisphere is 8ms/trace. The
f-k filter is designed to reject dips greater than 4ms/trace. The time-space domain 3-D
operator can be generated by the inverse transform of the appropriate conical zone in the
frequency domain. Axial symmetry in the frequency domain implies axial symmetry in the
time domain (see Appendix A). Furthermore, although the 3-D time domain response of the
conical pass zone is axially symmetric it is not the same as the 2-D f-k filter (see Figures 8a
and 8b). Filtering of a 3-D hemisphere model confirms that indeed there are different pass
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FIG. 4. (a) Schematic diagram of the 1-D median filtering process with a 5-point
window,
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FIG. 4. (b) schematic diagram of the use of weights or filter coefficients in the median
filter,
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FIG. 4. (c) Schematic diagram of the 3-D median f'dter process with filter coefficients.

RESULTS

A 3-D seismic survey was conducted in Northern Alberta over a 7.3 km by 3.1 km
area (Figure 5). Due to poor surface conditions the resulting seismic data volume was
contaminated with a great deal of noise. The prospective zone (around 1.3 s) was
associated with faulted carbonates. The migrated data volume was filtered using 3-D mean
and median f-k processes. The results are compared here on just a diagonal seismic section
from the data volume. A diagonal line from the 3-D volume is shown in Figure 6a. We
note the very noisy near surface expression. The resulting diagonal line from the mean f-k
filtered volume is shown in Figure 6b. while much more clear than the original data, some
might say that an artificial coherency (worminess) has been produced. The median filter has
also enhanced coherency but local character appears to be retained in the data (Figure 6c).
Time slices of the data volume show the effect of the two filters in a more dramatic manner.
A slice of the raw data at a time of 1338 ms is shown in Figure 7a. A alice of the 3-D f-k
filtered volume at the same time is displayed in Figure 7b. We note the considerable
improvement in the continuity of the plan-view reflections. The 3-D median f-k filtered
slice is shown in Figure 7c. We now also see improved continuity in the reflectors, but
local and small features appear better preserved than in the Figure 7b (eg. in the lower left
corner).
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FIG. 5. Geometry of N. Alberta 3-D data seismic survey.
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FIG. 6. (a) Diagonal line from N. Alberta 3-D data volume
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FIG. 6. (b) Same line extracted from the 3-D volume after mean 3-D f-k filtering,
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FIG. 6. (c) Same line extracted from the 3-D volume after median 3-D f-k filtering.
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FIG. 7. (a) Time slice of 3-D data volume at 1.338s through the top of the faulted 
carbonate of interest, 

 
 
 
 

 
 

FIG. 7. (b) Time slice of the 3-D volume after conventional f-k filtering, 
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FIG. 7. (c) The same time slice after median F-k filtering. 
 
 

CONCLUSIONS 
 

Three-dimensional filters are useful in increasing the coherency of seismic data 
sections and slices.  Basic one-pass 3-D filters have a different response than two-pass 2-
D filters.  One-pass filters provide the symmetric pass region that is likely desirable.  The 
median concept can be extended to 3-D filters and appears to reduce noise effectively 
without inordinate smearing of local anomalies. 
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APPENDIX A

To create a 3-D time domain operator it seems intuitively correct to time axially rotate a
2-D operator by 2 7_to sweep out a 3-D volume. However, one must first establish that
axial symmetry in the frequency domain (such as the cone filter in figure 2b) represents
axial symmetry in the time domain (Mesko, 1984). Further, it must be shown that the 2-D
time domain dip reject coefficients obtained from the inverse transform is equivalent to an
axial slice of the true 3-D time domain operator.

The inverse transform of the 3-D filter F is

f(t,x,y) : fl f F(W'kr)ei(wt+k'x+kyY)dwdkxdky

or by writing the spatial components as a dot product and representing the filter F as
symmetric

= kx + ky, f = x+y where Ikrl = k'_x+ k_ and Irt =, x'f_y 2

then _" r-=_coso_ and dkxdky=krdkrdo_ so

NO_

 txy,:  Wkr ,eiw{Iei k 'cos 'd l r w
Recall the integral formulation of a zero order Bessel function

7_x

2_J0{u) = I eiuc°sad°_
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Thus we see the fight hand side of the final equation is independent of ot. Axial
symmetry in the frequency domain implies axial symmetry also in the time domain.

f(t,x,y,) = f(t,r) = 2xff f F{w,kr)kr eiWtJ0(rkr) dk_w

Secondly, we compare this expression with the integral equation
of the inverse 2-D transform of the same f'llter.

/-r
f(t,R}

=/J- F(w'kR) ei(wt + kRR)dkRd w
J_

One can clearly see that the integration over the Bessel function J0 (rkr) with respect to

kr is not equivalent to the integration of the same filter in the 2-D case. This indicates that
the axial slice of the 3-D time domain operator is not equivalent to the 2-D operator. The
filter time domain response of these two equations is demonstrated in figures 8 a) and 8
b)for a dip reject filter of 4 ms/trace.

FIG 8. (a) 2-D time domain operator
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FIG 8. (b) Axial slice of 3-D time domain operator
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APPENDIX B

WEIGHTED MEDIANS

If in selecting the median of a group of numbers, some numbers were considered
more significant (or reliable) than others, then it might be desirable to bias the median
selection toward these values: Certain numbers would have greater weight in the estimation
procedure. A way to do this is to repeat the more important numbers some multiplicity of
times, order this augmented sequence and select the middle value (Claerbout and Muir,
1973). This corresponds to minimizing a new function M, defined with respect to the
weighted median Xm

N

M=_ wi[xi-xr_ , (1)
i=l

where xi are the data values,
N is the number of original data values,
wi are the positive - valued weights of xi.

If we take the derivative of M with respect to Xm, then M is minimized when

N

wi" sgn (xi-xm) = 0 ,
i=l

1 ai>Owhere sgn ai = -1 ai<"o'

or when x m is the middle value of the augmented sequence.

A weighted median filter extracts the median point from an augmented window of
data values, outputs this value, then moves to the next data window, outputs the median,
etc. Convolutional filters, on the other hand produce an output point by multiplying the
weight (filter coefficients) by the data values and summing these products (then possibly
normalizing): They find a scaled mean of the filter coefficient-data products. A
convolutional filter would use a window with assigned position weights to calculate the
appropriate mean, then slide the window to a new set of points find the product mean, and
so on. The basic reason to use the convolutional filter weights with the median concept is
to develop a hybrid filter which will display desirable properties of both mean and median
processes (Stewart, 1985).

Claerbout and Muir (1973) defined the function to be minimized for the weighted

median by equation (I) with wi = Ifil, where fi are the filter coefficients (weights)
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associated with data points xi. Negative weights are not admitted into the estimation
process. However, some filters (e.g. band-pass, f - k) have negative coefficients from
which they derive their special properties. The questions arise then: What is the meaning
of negative weights? How can they be admitted into a median selection? In convolutional
filtering the coefficient-data product could be negative due to a negative coefficient and
positive data value or vice versa. By analogy, I define a new function Mw to be minimized
which will give a meaning to negative weights in the selection of a weighted median value
xw. In this case the data values are multiplied by the sign of their associated filter
coefficients and weighted according to the magnitude of the coefficients:

N

M,_= Z Ifd[(sgn fi)" Xi- Xwl , (2)
l=i

where xi are the data values,
N is the number of data values,
fi are the filter coefficients
(weights) associated with xi.

To minimize Mw take the derivative with respect to Xw:

N a

aM_ Z If]_[(sgn fi)"xi- xwI (3)aX,#¢ i--I

N

aX w '
i-1

where Yi = (sgn fi) • xi - Xw ,

=_ If (sgn Yi)" Yi ,
i=l

N

=-_[ftsgnTi , withasgna Ti=o , gic:O .
i-1 ,-Xw
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Then for the minimum set

N

_f][(sgnfi)"xi- xw]= 0. (4)
i=l

So the weighted median is found by signing the data values according to their
associated filter weight signs, augmenting the data values by their associated weight
magnitude, ordering and finding the middle value. The weighted median point XKcan be
equivalently determined by finding the data point corresponding to the half cumulative
weight point:

K N

IfJl le ,
j=l "_i=l'=

where j is the index of the ordered data values and their corresponding filter coefficients, K
is the number of data-associated filter coefficients that must be added to equal the half
cumulative magnitude of filter coefficients.

While the basic median procedure selects an actual data point, the signed, weighted
selection is only guaranteed to select an actual absolute value; the output point could be the
negative of an actual point.
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