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Orthorhombic anisotropy: A physical model study 

Scott P. Cheadle, R. James Brown and Don C. Lawton 

ABSTRACT 

An industrial laminate has been shown to possess anisotropy when used as a medium for the 
propagation of elastic waves. The material, Phenolic CE, is composed of thin layers of canvas 
fabric with an approximately orthogonal weave of fibers bonded with a phenolic resin. Different 
compressional-wave velocities and distinct patterns of shear-wave splitting are observed in 
experiments involving ultrasonic transmission in three mutually orthogonal (principal) directions 
through a cube of the material, as well as between edges of the cube beveled at 45’ to the adjacent 
principal axes. Analysis of the results demonstrates that the phenolic laminate is suitable for 
modeling media with anisotropy of orthorhombic symmetry. The P-wave anisotropy varies from 
6.3% to 22.4% and the S-wave anisotropy from 3.5% to 9.6% between pairs of the three principal 
axes. Expressions are presented that relate the measured body-wave velocities to nine elastic 
coefficients that define the stiffness matrix for this case of orthorhombic symmetry. 

INTRODUCTION 

Shear-wave splitting and anisotropy are being studied by more and more people worldwide 
as part of the ongoing effort to enhance seismic data interpretation and reservoir exploitation. 
Multicomponent surface-seismic, VSP, crosswell and full-waveform sonic data are being used to 
determine the relationships among anisotropy, shear-wave polarization and fracture patterns (Keith 
and Crampin, 1977; Crampin, 1981, 1984, 1985; Lewis et al., 1989, Yale and Sprunt, 1989). 
Banik (1984) reported errors in depth estimates of between 150 and 300 m in areas of the North 
Sea basin due to anisotropy within some shaly units. Ensley (1989) described anisotropy values 
of between -40% and +40% for “sand-, shale- and carbonate-prone” units in the Prudhoe Bay 
area. Both compressional- and shear-wave anisotropy impact on velocity analysis for 
multicomponent imaging and methods of estimating stress based on the V,/v, ratio (Thornsen, 
1986, 1988). Liu et al. (1989) have used numerical modeling results to outline the potential and 
limitations of shear-wave splitting analysis in the crosswell configuration. Tatham et al. (1987) 
and Ebrom et al. (1990) described physical modeling experiments simulating fracture-induced 
azimuthal anisotropy. 

Physical modeling studies of anisotropy are being conducted as part of the CREWES 
Project (Consortium for Research in Elastic Wave Exploration Seismology) at the University of 
Calgary. Ultrasonic modeling using phenolic laminate is ideally suited to the study of velocity 
anisotropy because the ambiguities inherent in field data are absent. To proceed, the parameters 
that characterize the modeling material must first be measured. This paper describes the results of 
experiments to determine the anisotropic elastic properties of Phenolic CE. 

Based on our initial observations of shear-wave splitting and velocity measurements at 
various directions through a cube of the phenolic, it seems clear to us that this material can be 
described, to a high degree of accuracy, as possessing three mutually orthogonal axes of twofold 
symmetry. This is the same symmetry exhibited by the orthorhombic class of crystals. The elastic 
properties of such anisotropic crystals have been studied extensively (Fedorov, 1968; e.g. 
Musgrave, 1970; Nye, 1985). The theory of wave propagation in anisotropic media is used to 



272 

relate the nine elastic stiffnesses (orthorhombic case) to observed body-wave velocities, permitting 
one to compute the details of elastic-wave propagation in any direction through the phenolic. 

PHYSICAL MODEL EXPERIMENTS 

We are using piezoelectric P-wave and S-wave transducers as both sources and receivers in 
our multicomponent physical modeling. Both types are flat-faced cylindrical contact transducers 
with an active element 12.6 mm in diameter. The compressional or P-wave transducer 
(Panametrics V103) is vertically polarized, with the maximum sensitivity normal to the contact 
face. The shear-wave transducer (Panametrics V153) is horizontally polarized, with the maximum 
sensitivity parallel to a line across the contact face. During operation, these contact faces are 
coupled to a selected flat surface of the phenolic and, for a particular experiment, a profile direction 
and sag&al plane are established. To record the radial component, the shear receiver transducer is 
used with the polarization parallel to the direction of the profile (in-line), whereas for the transverse 
component, the transducers are rotated so that the polarization is perpendicular to the azimuth of the 
profile and to the sag&al plane (cross-line). 

The source transducer is driven with a 28-volt square wave tuned to produce a broadband 
wavelet with a central frequency of 600 kHz. Amplified data are sampled using a Nicolet digital 
oscilloscope connected, through an IBM-XT which controls the experiments, to a Perkin-Elmer 
3220 seismic processing system for storage. Traces of up to 4096 samples are recorded 
sequentially and stored on tape or disc in SEG-Y format. 

The CE-grade phenolic laminate is composed of layers of a woven canvas fabric saturated 
and bonded with a phenolic resin, and has a density of 1364 kg/m3. Initial tests with the material 
showed a directional dependence of the velocity for both P and S waves, suggesting its suitablity 
for physical modeling of an anisotropic medium. Shear-wave splitting was observed during 
transmission tests when the sample was rotated between two shear-wave transducers. The 
polarizations of the split shear waves were approximately parallel to the orientations of the 
orthogonal weave of fibers in the canvas fabric. For this reason, subsequent experiments were 
conducted on pieces of phenolic that were cut with faces parallel or orthogonal to the observed 
fiber directions as well as to the plane of the canvas layers. 

Shear-wave splitting 

Shear-wave splitting experiments were conducted using cubes of phenolic. A sample of the 
CE grade phenolic with the faces labeled with the convention used in this study is shown in Figure 
1. The factory-machined surface of the laminate sheet, parallel to the fabric layers, was designated 
Face 3, consistent with the conventional choice of x3 as the vertical direction and with a horizontal 
attitude for the layering of the medium. The other two sides of the cube were designated Faces 1 
and 2. The l-direction is therefore the normal with respect to Face 1 and likewise for the 2- and 3- 
directions. Since the 3direction turned out to be the slowest for P-wave propagation, the other two 
principal directions were labelled such that the l-direction is fastest and the 2-direction intermediate 
for P-wave propagation. 

The apparatus used for studying split shear waves is shown in Figure 2. The cube of 
material is placed between two fixed shear-wave transducers which are aligned with parallel 
polarizations. The cube is rotated between the transducers, and a pointer on the cube is used to 
determine the azimuth of the sample with respect to a fixed circular protractor. A similar 
experimental procedure was described by Tatham et al. (1987) for a study of fracture-induced 
shear-wave splitting. 

Figures 3,4 and 5 show the transmission records through Faces 1,2 and 3, respectively, 
of an approximately 9.6 cm cube of phenolic. Each trace records the signal transmitted through the 
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Fig. 1. Phenolic CE laminate is composed of layers of a canvas weave fabric bonded 

with phenolic resin. The faces are labeled as used in this study. 
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Fig. 3. The record through Face 1 of a 9.6 cm cube of phenolic, showing the faster 

Sr arrival at 1665 m/s and the slower S2 arrival at 1602 m/s. The compressional velocity in 

the l-direction is 3576 m/s. The polarization direction of the Sr amplitude maximum is 

parallel to the “bedding plane” of the canvas layers, while that of the S2 amplitude 

maximum is perpendicular to that plane. 
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Fig. 4. The record through Face 2, showing the faster St arrival at 1658 m/s and the 

slower S2 arrival at 1506 m/s. The compressional velocity in the 2-direction is 3365 m/s. 

The polarization directions of the S1 and S2 amplitude maxima are parallel and 

perpendicular respectively to the canvas layering, as in Fig. 3. 
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Fig. 5. The record through Face 3, showing the faster S1 (1610 m/s) and slower S2 

(1525 m/s) shear waves. The compressional velocity in the 3-direction, determined 

separately with P-wave transducers, is 2925 m/s. The traces for the records of Fig. 3 - 5 

were recorded at 5’ intervals of rotation. 
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cube at 5” intervals of rotation with respect to the polarization direction of the shear-wave 
transducers. The 0” direction was chosen to correspond to the azimuth of the amplitude maximum 
of the faster of the two shear-wave arrivals. The sample interval used in this study was 50 
nanoseconds, and the arrival times are shown in microseconds. The faster shear arrival is 
designated Sr and the slower mode &. While it is more correct to refer to the split shear waves and 
the compressional waves under most conditions as quasishear and quasicompressional modes, 
except for special cases, such as propagation in one of the principal directions, that prefix will be 
implied rather than included where appropriate. On Figures 3, 4 and 5, the weakly coupled P- 
wave arrival is barely visible. The compressional velocities were determined separately using the 
P-wave transducers. 

On Figures 3 and 4, in the l-and 2directions, respectively, the polarizations at the S1 
amplitude maxima are, in each case, parallel to the “bedding plane” of the canvas layers, whereas 
for the S2 amplitude maxima, the polarizations are perpendicular to this plane. In Figure 5, for 
propagation in the 3direction, the polarization of the Sr amplitude maximum is parallel to the l- 
direction (one of the fiber directions), while the S2 amplitude maximum is parallel to the 2direction 
(the other fiber direction). A plot of amplitude vs. polarization direction for a record through Face 
2 is shown in Figure 6. This and other transmission records through the phenolic show that the S1 
mode generally has a greater maximum amplitude than the S2 arrival, indicating that the effective 
attenuation is also dependent on the polarization direction. The ratios of the amplitudes of the S1 
arrivals to those of the S;! arrivals, measured at their maxima, have ranged from 1.1 to 1.4 for the 
samples tested. 

The P, Sr and S2 velocities measured along the principal axes are summarized in Figure 7 
and those along the diagonals (between opposing edges) in Figure 8. The values quoted are group 
velocities based on the transit time measured with respect to the onset of the pulse. The velocities 
are the averages of values measured through 10 cm and 8 cm cubes. The measured velocities for 
the phenolic cubes were repeatable to within f 15 m/s ( = 0.5%) for P-waves and 2 4 m/s (= 
0.25%) for shear waves. The variations are likely related to small inconsistencies in the thickness 
of the coupling agent used to bond the transducers to the phenolic. Velocity variations between 
different samples of phenolic ranged up to 2%. The time picks used to calculate the velocities were 
made directly on the digital oscilloscope for maximum accuracy. 

For the following discussion, the velocities will be labeled with 2 subscripts indicating the 
directions of propagation and polarization (i.e. particle motion) with respect to the three principal 
axes. For example, V11 is the group velocity for propagation and particle motion in the l-direction 
(P-wave) while Vl2 indicates propagation in the l-direction with polarization in the 2 direction (S- 
wave). For the cases of the diagonal raypaths we adopt in this paper a special index convention. 
For propagation in the 23-plane with the ray direction at 45’ to the 2-and 3-directions we use the 
index 4. The group velocity of the quasi-P wave in this direction is designated by VM, while the 
group velocity of the S wave with particle motion in the 23-plane, i.e. the quasi-SV, is designated 
v4;i. The velocity of the corresponding SH wave, with particle motion in the l-direction, is 
labelled V4 1. Similarly, we use the indices 5 and 6 to denote propagation in the 3 l- and 12-planes, 
respectively, with the ray direction bisecting the respective axial directions. The P-, SV- and SH- 
wave group velocities are thus labeled V5 5 ,V 5- and v52, in the 3 l-plane, and V66, V6, and v63, 5 
in the 12-plane. 

Slow, medium and fast directions through the cube (3,2 and 1, respectively) were defined 
on the basis of the compressional velocities. Of the six shear-wave velocities measured in the 
principal directions there are, according to orthorhombic theory (Appendix), three independent 
values, which depend on the direction of propagation and particle motion. To a high degree of 
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Fig. 6. The plot of amplitude vs. azimuth with respect to the polarization direction of 

the shear-wave transducers for a record through Face 2. The scatter of the measured 

amplitudes from the sinusoidal variation with azimuth is due to variable coupling of the 

transducers to the sample during rotation. 
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Fig. 7. The measured P-wave and S-wave velocities measured along the principal 

axes are summarized, with the heavy arrow designating the direction of propagation and the 

lighter arrow the direction of particle motion of the shear waves. The subscripts 
correspond to the directions of propagation and particle motion respectively. Of the six 
shear wave velocities, three distinct pairs of values are recognized 
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accuracy, we also observed only three different S- wave velocities among the six measured for 
axial propagation. The shear-wave velocities may be paired as follows: 

1) propagation in the medium direction and particle motion in the slow direction, or vice versa 
(i.e. V23 = V32); 

2) propagation in the fast direction and particle motion in the slow direction, or vice versa (i.e. 
v13 = V31); 

3) propagation in the medium direction and particle motion in the fast direction, or vice versa 
(i.e. V21 = VIZ). 

Each of the velocities along the diagonal raypaths is the average of two measurements 
(between the two pairs of opposing edges of the cube) which had equivalent raypaths relative to the 
principal axes within each of the three principal planes. The two traveltimes for each of the 
diagonal raypath pairs were virtually identical, differing by 2 sample points (100 ns) or less in all 
cases. Four measurements were also recorded for raypaths from comer to corner of the cube, with 
similarly small differences in the velocities. This symmetry confumed that the principal planes do 
correspond to the directions of the orthogonal weave of fibers and the planar layering of the canvas 
fabric in the phenolic, as assumed. 

ORTHORHOMBIC ANISOTROPY 

For orthorhombic symmetry, it is required that Vl2 = V21, V31 = V13 and V23 = V32, all of 
which are satisfied by the observed shear-wave velocities along the principal axes. Three distinct 
compressional velocities were measured in mutually orthogonal directions. The results of the 
transmission experiments indicate that the orthorhombic symmetry system is appropriate to 
describe the anisotropy of this material. Following the indicial notation used by Thomsen (1986), 
and assuming the summation convention, stress o and strain e are related by 

~~=C~~E~, i,j =1,2,3. (1) 

For the case of orthorhombic symmetry, the 3x3~3~3 stiffness tensor Cite may be reduced 
to a 6x6 symmetric matrix 

C mn= 

Cl1 Cl2 Cl3 

c22 c23 

c33 
c44 

C55 
C66 

(2) 

of nine independent coefficients (Nye, 1985). Using the elastic equations of motion the stiffnesses 
Cm, may be estimated from the observed body-wave velocities and the density of the phenolic as 
outlined in the Appendix. The results of the stiffness computations are summarized in Table 1. 
The equations of motion involve phase velocities, while the observations are of group velocities. 
Along the principal axes, the phase and group velocities are equal, and the stiffnesses were 
computed directly using equations (A-45) and (A-46). Along the diagonal raypaths, because the 
wavefront is not in general spherical, the direction of the wavefront normal (i.e. the slowness 
direction) is not necessarily the same as the 45’ direction of the raypath (i.e. of energy transport). 
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TABLE 1. BODY-WAVE VELOCITIES AND STIFFNESS COEFFICIENTS 

MODE GROUP PHASE PHASE STIFFNESS 
VELOCITY VELOCITY ANGLE COEFFICIENT 

(m/s) (m/s) (deg. 1 (x 10' N/m*) 

RAYPATHS IN PRINCIPAL DIRECTIONS 

p V33 2925 
p V22 3365 
p Vll 3576 

s V21 1658 1662 
s V12 1665 (avg) 

s V31 1610 1606 
s V13 1602 II 

s v32 1525 1516 
s v23 1506 w 

RAYPATHS AT 45O TO PRINCIPAL DIRECTIONS 

C33 11.670 
C22 15.445 
Cl1 17.443 

C66 3.768 

C55 3.518 

C44 3.135 

p V66 3378 3373 41.6 C21 7.225 7.341 
sv v6E 1810 1809 47.1 C2I 7.457 (avg) 
SH v63 1556 1556 48.3 

p V55 3219 3155 33.4 Cl3 7.451 7.230 
sv V55 1620 1620 45.0 Cl3 7.008 w 
sH v52 1583 1577 39.8 

p V44 3094 3066 37.1 c23 6.630 6.645 
SV V4z 1569 1569 45.7 c23 6.660 wl 
SH VI1 1636 1632 47.0 

TABLE 2. MEASURED ANISOTROPY 

6 d Y 

*l-plane -0.047 0.063 0.059 

310plane 0.183 0.224 0.096 

320plane 0.081 0.150 0.035 
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Furthermore, for a particular 45” raypath, the P, SV and SH modes have, in general, different 
slowness directions. The procedure used to compute these directions, the phase velocities and the 
related stiffnesses for the diagonal raypaths is described in the Appendix. 

Nine independent velocity values are required to enable complete determination of the 
stiffnesss matrix for the case of orthorhombic anisotropy. These could include the three P-wave 
velocities along the principal axes, three shear-wave velocities (one of each pair, or their average) 
also along the principal axes, and three P-wave or W-wave velocities, each for a raypath 
perpendicular to one and at 45” to the other two principal axes. In principal, measurements at other 
orientations could be used but these would require considerably more complex solutions. 

Since we actually observe more than nine velocities, the internal consistency of the 
orthorhombic symmetry model can be checked. For example, the averages of the shear-wave 
velocity pairs for propagation along the principal axes (see Figure 7) were used to calculate model 
W-mode velocities along the diagonal raypaths (see Figure S), i.e., 

v’4l = fl v13v12 / (v,z, + v12,)1’2 
= 1633 m/s . 

The observed V41 value is 1636 m/s, a difference of 0.18%. Similarly, V’s2 = 1583 m/s, equal to 
the observed value, and v’(j3 = 1559 m/s, differing by 0.19% from the observed v63 value of 
1556 m/s. Clearly, the W-mode velocities observed along the diagonal raypaths conform very 
well to the assumed orthorhombic symmetry model. The stiffness coefficients off the diagonal of 
the matrix, i.e. C12, C31 and C23, can be computed using either the P-wave or the W-wave 
velocities from the diagonal raypaths (see Appendix A). For example, either Vu or V44 can be 
used in the computation of a value for C23. Separate stiffnesses were computed using the 
measured P-wave and W-wave velocities, and the results are summarized in Table 1. The largest 
deviation, calculated as a percentage with respect to the mean of the two coefficients, is +3.0%, 
and is associated with the 13-plane which exhibits the largest anisotropy. In the 12-plane and 32- 
plane, the relative deviations between the P and SV stiffnesses are f1.6% and f0.2% 
respectively. 

DISCUSSION 

Degree of anisotropy 

The conventional measures of anisotropy for the transverse isotropy case are given by 
Thomsen (1986) as 

e = [vp (90”) -vp (OO)] /vp (0”) 

and 

y = [v, (90”) 7, (OO)] ws (0”) * (5) 
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At least in the case of transverse isotropy, the E term is not always useful in the context of the 
limited ray angles typical of surface seismic gathers. The term 

6 = 4 [Vp (45O) / vp (0”) - l] - [v, (90”) / VP (0”) - 1] (6) 

was defined by Thomsen (1986) and its use in conjunction with moveout velocity and stress 
analysis was discussed. 

The measures of these velocity ratios determined in the principal planes of the phenolic are 
shown in Table 2, and fall within the range of the values reported by Thomsen (1986) for a variety 
of rocks. The P-wave anisotropy ranges from 6.3% in the 21-plane to 22.4% in the 31-plane. 
The SH-wave anisotropy ranges from 3.5% in the 32-plane to 9.6% in the 31-plane. The plane of 
weakest P-wave anisotropy is not the same as the plane of weakest SH-wave anisotropy, but the 
planes of strongest anisotropy do correspond. Anisotropy of the SV mode is observed along the 
45’ raypaths. In the 12-plane, V,, is 1810 m/s, 8.9% higher than V21. In the 32-plane, v44 is 
1569 m/s, 3.5% higher than V32. SV anisotropy in the 31-plane is negligible despite this plane 
exhibiting the strongest P and SH anisotropy. 

Origin of the anisotropy 

The cause of the anisotropy in the phenolic laminate appears to be related to the layering and 
weave of the canvas fabric. The material behaves like a stack of nets set in a gel, with different 
fiber densities in the directions of the three principal axes. The many causes of anisotropy in rocks 
range from the microscopic to the macroscopic, including preferred orientation of mineral grains, 
pores or fractures (Crampin, 1981, 1984, 1985), thin-layer lamination (Helbig, 1983) and regional 
stress (Nikitin and Chesnokov, 1984). Anisotropy has been recognized in many rocks (Thomsen, 
1986; Banik, 1984; Lewis et al., 1989; Ensley, 1989), but the physical cause and symmetry 
systems of specific cases of anisotropic media are seldom unambiguously identified. Transverse 
isotropy can be invoked for horizontal thin-bed layering, for example, in shale sequences, while 
azimuthal anisotropy may arise in the idealized case of aligned vertical fractures. Both of these 
examples would be degenerate cases of the more general orthorhombic system. Two or more 
sources of anisotropy superimposed orthogonally within the same lithologic unit, such as aligned 
vertical fracturing of a horizontally laminated sequence, could result in orthorhombic anisotropy. 
The phenolic laminate is being used to simulate media with similar velocity properties regardless of 
the different physical causes of the anisotropy. 

CONCLUSIONS 

Ultrasonic modeling with Phenolic CE laminate has demonstrated the anisotropic elastic 
properties of the material. The patterns of shear-wave splitting observed through each face of a 
cube of the phenolic, along with the measured compressional-wave velocities, were used to define 
orthogonal principal axes related to the slow, medium and fast directions through the material. 
Shear- and compressional-wave velocities were also measured in directions between opposing 
edges and opposing comers of the cube to support the determination of the orientations of the 
planes of symmetry. Within a principal plane, the SV wave has equal velocities for propagation in 
either of the axial directions. Velocities computed for specific directions of propagation, based on 
velocities from other directions and assuming the orthorhombic model, closely matched the 
observed values. Analysis of the data supports the interpretation that the anisotropy conforms very 
closely to a system of orthorhombic symmetry. 
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Physical modeling is currently proceeding with the phenolic and involves the recording of 
shot gathers as well as simulated VSP and crosswell experiments. The effect of orthorhombic 
anisotropy on moveout velocities and tomographic reconstruction will be described in future 
reports. Physical model data using phenolic laminate should prove to be a valuable adjunct to 
numerical studies of the increasingly important topic of anisotropy. 
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APPENDIX 

RELATIONSHIPS AMONG VARIOUS ELASTIC-WAVE PARAMETERS 
IN AN ANISOTROPIC MEDIUM OF ORTHORHOMBIC SYMMETRY 

Basic theory and the Kelvin-Christoffel equations 

The equations of motion governing wave propagation in a generally isotropic elastic 
medium are given by many authors (e.g. Bullen, 1963; Fedorov, 1968; Musgrave, 1970; 
Aki and Richards, 1980; Crampin, 1981, 1984; Nye, 1985). For infinitesimal 
displacements ui , Cartesian coordinates xi , density p, stress tensor 0~ and body forces 
per Unit mass gi : 

Piii = Oij, j + pgi (A-1) 

where”, j ” denotes the partial derivative with respect to xj and where the Einstein 
summation convention (for repeated indices) applies. 

The stress tensor, in terms of the strain tensor &kl and the stiffness tensor Cijkl , is 
given in accordance with Hooke’s law by: 

where 

Substituting (A-2) and (A-3) into (A-l), neglecting any body forces, yields: 

(A-2) 

(A-3) 

(A-4) 

These equations of motion, and their solution for monochromatic plane-wave 
motion, are considered by many authors (e.g. Fedorov, 1968; Musgrave, 1970; Keith and 
Crampin, 1977; Aki and Richards 1980; Crampin, 1981, 1984) but here we follow 
Musgrave’s treatment most closely. 

We assume harmonic plane-wave displacement, expressed as: 
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uk = Apk exp [i o (SJ~ - t)] (A-5) 

where A is the amplitude factor, pk is the unit polarization (or particle displacement) vector, 
CII is angular frequency: sr is the slowness vector, and in this equation only, i = fl . 
The slowness vector gives the direction of the wavefront normal and may further be 
written: 

Sr = v-ln, (A-6) 

where v is phase velocity and n, is the unit slowness (or wavefront-normal) vector. From 
equation (A-4), (A-5) and (A-6) one obtains: 

(cijk~njnl - PV2&$ Pk = 0 . (A-7) 

Thus, the determination of the details of the wave motion has been cast as an 
eigenvalue problem in which, having specified cijkl (the stiffnesses of the medium) and nr 
(the direction of phase propagation), one can solve for pk (the particle motion or 
polarization vector) and three values (in general) for v (phase velocity). 

Due to the well known symmetries involved (see e.g. Musgrave, 1970; Nye, 1985) 

(A-8) 

and therefore the matrix (cijklnjnl - pv20ik) is symmetric. This implies in turn that the 
three eigenvalues obtained for pv 2 by setting 

ICiju njnl- PV2<Tik 1 = 0 (A-9) 

will be real. (Throughout this appendix vertical bars denote determinant ). 

A further consequence of the symmetries embodied in (A-8) is that there are only 21 
independent stiffnesses, cijkl. Following e.g. Musgrave, (1970); Nye (1985) and 
Thomsen (1986), the fourth-order stiffness tensor may be written as a second-order (6x6) 
symmetric matrix: 
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1 (A- 10) 
m =i if i =j, 

m =9-(i+j) ifi #j 

and n and kl are analogous tom and ij . 

By introducing the so called Kelvin-Christoffel stiffnesses, given by Musgrave 
(1970) a; - 

rik = Ciju?ljnl 

equations (A-7) and (A-9) may be rewritten as: 

I 

hl - pv2 r12 r13 

r21 r22 - PV~ r23 

r31 r32 r33 - PV~ I 
[ 

PI 
P2 
P3 

and 

1 = 0. 

rll - pv2 r12 r13 

r21 r22 - PV~ r23 =o. 

r31 r32 r33 - PV~ 

Equations (A-12) and (A-13) are known as the Kelvin-Christoffel equations. 

(A-l 1) 

(A-12) 

(A-13) 

In the case of orthorhombic symmetry only 9 of the, in general, 21 independent 
stiffnesses, Cmn, are nonzero. The six independent Kelvin-Christoffel stiffnesses are then: 



290 

l-11 = n&1 + n& + n&5 
r-22 = nfCfjfj + n&Y22 + n&J44 

r33 = nfC55 + r&44 + n$33 

r23 = n2n3 (c23 + c44) 
r31 = n3nl (C31 + 65) 

r12 = no2 (G2 + C66). 

Propagation along a principal direction 

For a slowness vector in the l-direction, 

nj =(l, 0, 0) 

and equations (A-14) reduce to: 

rll = cl1 
r22 = c66 
r33 = k 

r23 = r31 = r12 = 0. 

Equation (A- 12) then becomes: 

1 rll-pv2 0 0 r22-pv2 0 0 r33 - 0 0 PV 2 Ii] Pl p2 3 =o. 

> 

(A-14) 

(A-15) 

1 (A-16) 

(A-17) 

For this rather simple case, that of propagation along a principal direction, there are 
three obvious eigenvalues which will zero the determinant of the 3x3 matrix. For each of 
these, the associated eigenvector p k is the polarization (or unit-particle-displacement) 
vector. 

The P wave. - Choosing the eigenvalue solution: 
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I-11 -pv2=0 (A-18) 

reduces the three equations of (A-17) to two, namely: 

1 
C66- Cl1 O 
0 IL1 P2 =o. 

cw-Cl1 3 
(A-19) 

The only permissible solution to (A-19) is: 

p2=i’3=0 (A-20) 

since otherwise at least two of the six independent stiffnesses would have to be equal, 
violating the assumption of orthorhombic symmetry. It follows from equations (A-16), 
(A- 18) and (A-20) that 

Pk =(1,&o) and ~11 = (C, I@)~‘~ (A-2 1) 

where vr 1 denotes that v which applies for propagation (slowness) in the l-direction 
with particle motion (polarization) in the l-direction, that is, the P -wave velocity. 

The S waves. - Choosing each of the other two eigenvalue solutions leads to the 
two solutions: 

pk = (0~1 8) and v12 = (Cfjdo)“2 (A-22) 

and 

Pk = (to, 1) and ~13 = (C~slp)~'~ , (A-23) 

these representing S waves polarized in the 2- and 3directions, respectively. 

The corresponding velocities and polarizations for propagation in the 2- and 3- 
directions are obtained from equations (A-21), (A-22) and (A-23) by cyclic variation of the 
indices (1,2, 3) and of the indices (4,5, 6). Since, for these axial propagation directions, 
the wavefront normal and the raypath have the same direction, one could replace v (phase) 
with V (group) in equations (A-21), (A-22) and (A-23). 

Propagation at 45’ to two principal axes or “edge to edge” 

Equation (A-21) to (A-23) and their cyclically varied analogs allow one to determine 
the six stiffnesses along the diagonal of the C,, matrix from velocities measured along 
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principal directions. In order to determine the three independent off-diagonal stiffnesses, 
one must measure velocities for raypaths along different directions. The next simplest 
directions to consider would seem to be those in principal planes at 45” to each of two 
principal directions. We have measured velocities along each such raypath for the three 
different polarizations. 

Unfortunately, the raypath or group-velocity direction is not, in general, the same 
as the wavefront-normal or phase-velocity direction (Figure A-l). So we cannot make 
simple substitutions for ni (= 0 or c/2) in equations (A-14). We need additional 

equations that will allow determination of ni and v from knowledge of & (the unit vector 
in the group-velocity direction; ( Figure A-l). 

Such theory has been dealt with in several works (e.g. Vlaar, 1968; Musgrave, 
1970; Kendall and Thomson, 1989). Here we take the result from Musgrave (1970) and 
refer the reader to the works cited for details. Starting from the geometrical relationships 
(Figure A-l): 

Musgrave (1970, p. 89) gives 

Vi=1 
2PV 

where 

v /V = cos A = ni E,i , (A-24) 

i#j#k 

(A-25) 

(A-26) 

and 
Ak = rkk (no SUmmation) . (A-27) 

In equation (A-25), p, a and A inside brackets should be represented by their kth 
components and the products of the brackets are summed. This notation follows Musgrave 

(1970) except that we use ci as the unit vector whereas Musgrave uses & as the group- 
velocity vector, for which we use Vi . 

For a medium of orthorhombic symmetry, we get from equations (A-26), (A-27) 
and (A-14): 

aT=nl 2 (Cl2 + C66)(C31 + 65) 

(c23 + c44) 
(A-28) 
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Fig. A-l. Schematic diagram of a wavefront in an anisotropic medium at times c 

and C + 6t , showing the directions of the phase and group velocities, v and V respectively, 

and their corresponding unit vectors, ni and ki respectively. 
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and 
Al = nf Cl1 + nz C66 + nf Css (A-29) 

and similarly for k = 2 and 3. Substitution into (A-24) results in: 

pvvl =p~[(pv2-,:C~~-n&C66-n~C~5)n;l+~lc~l]+n16=C66+P~C55) (A-30) 

and similarly for i = 2 and 3. If we consider propagation in the 23-plane of symmmetry: 

nl=OandV1=O. 

Thus, from equation (A-30) 

pfn;’ (pv2 - rzg C66 - rzf c55) = 0. 

and therefore either 

Pl =0 

or 
pv2 = nz C66 + nf (255 . 

(A-3 1) 

(A-32) 

(A-33) 

(A-34) 

The quasi-P and -SV waves. - Equation (A-33) implies polarization entirely 
within the 23-plane (the sagittal plane), i.e. P-W types. From the analogs to equation (A- 
30) for i = 2 and 3 we then get: 

pvV2 = 13 n;’ (Pv 2 - &44) + &2C44 

and 

pvV3 = p&C44 + pfn;’ (PV 2 - n=C44). 

Further, from equation (A-12) for this case we get: 

p2 = n2 n3 (c23 + c44) = pv 2 - nZC44 - &33 

P3 pv 2 - n&Y22 - n&T44 n2 n3 (c23 + c44) 

(A-35) 

(A-36) 

from which 
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P22 - pv2 - nj C44 - r&g 

PZ pv2 - nz C22 - r&44 ’ 
(A-37) 

Since the raypath or group-velocity direction is at 45” to the 2- and 3-axes, ~2 = ~3 
and the two right-hand sides of equations (A-35) are equal. From this and equation (A- 
37) one can eliminate p2 and p3 and obtain: 

P2v4 (n3 - n2) + pv2 b$ (C22 + C44) - 4 (C33 + C44)l 
+C&wz$ (n2 + n3) - C22C4& (n2 + ns) = 0. 

(A-38) 

It is clear from (A-36) that there are two solutions for v2 and thus for p2/p3 . One 
of these solutions is the quasi-P or qP -wave case, the other the qSV -wave case. For qP 

we denote the phase velocity v~ and the group velocity V44. For qSV these are v44 
and V&i, respectively. There is, it is true, a fundamental incongruity between the single- 
and double-subscript notations for V. However, we do not try to combine the two and 
thus no problem ever arises here. 

Defining 0 = cos-l n3 , we can write (Figure A-l) that A = 8 - 45”. Therefore, 
from equation (A-24) for qP: 

vii = Vi cos A = @T/2) (n2 + w) Vii (A-39) 

where ij = 44,44 or 41, for qP, qSV or W, respectively. Using equations (A-21) to (A- 
23) and their cyclic variants to eliminate stiffnesses, and (A-39) to eliminate v from (A- 
38), we obtain: 

“itj h? + %f hs - ‘3) + 2v&(n2 + ‘3) h k&? + ‘2%) - ‘3 k& + ‘$1 
+ 4 (n$V3\ V,2, - n$V,2, V,2, = 0 , 

@40) 

in which all of the Vii have been measured experimentally. Now, since nz + ng = 1, 
equation (A-40) can, in principle, be solved for n2 and ng. In practice, we determine 
n2 and n3 by iterative substitution. Knowing n2 and ng and getting v 44 from equation (A- 
39), equations (A-36) and (A-37) can be solved for C23 and the polarization, PdP3. 
Similarly, using V4;j (qSV) in (A-40), we will get different values (in general) for n2, ns 
and v4;1 ; but assuming the orthorhombic model to be a reasonable one, we should get 
about the same result for C23 . 

The SH wave.- Choosing equation (A-34) instead of (A-33) we have, from (A- 
14) and (A-3 1): 

pvil = ns C66 + nj C55 = I?11 (A-41) 



296 

so that the Kelvin-Christoffel equations (A-12) result in 

Pk =(L 0, 0) * 

Incorporating (A-31) and (A-42) into (A-30) and its cyclic variants yields: 

p”41v2 = n2c66 and Pt’41v3 = n3C55 - 

Again applying V2 = V3 (for rays at 45’) and equation (A-39), we obtain: 

Q=k and J7d1= a v31v12 
n3 C66 (V312 + v12y2 - 

(A-42) 

(A-43) 

(A-44) 

Expressions for stiffnesses in terms of group velocities 

For completeness, expressions for the nine stiffnesses, for the case of 
orthorhombic symmetry, are here summarized. These equations follow directly from (A- 
21) to (A-23), (A-36) and (A-39), as well as their cyclic variants. 

Cl1 = PV:, 

c22 = pv,2, 
I 

c33 = Pv,2, 

(A-45) 

C& = pv223 = pv3; 

c55 = Pv321= PV:, 

C66 = PV:, = PV,: i 

P C23 =- 
n2n3 (L 

i(n2 + n3)2 V4$ - r$V,2, - n$ V3: 1 
[ k (n2 + n3)2 V424 - r$ V,2, - nl V223])1’2 - Pv,2, 3 

C31=& ([+3+n# V&&&nfV:l] 

[k (n3 +n# V&-n? V3;-nfV31 2])1’2 - Pv,2, , 

(A-46) 

(A-47a) 

(A-47b) 



(A-47~) 

And in (A-47) Vii (i = 4,5,6) may be replaced by Vii. 


