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Some Properties of Thin Beds

H. Chung and D. Lawton

ABSTRACT

Six thin-bed models as represented by six two-termed reflectivity series are
convolved with a Ricker 31 Hz zero-phase wavelet. The absolute maximum
amplitude (AMA) and the peak frequency (PF) of the resultant composite wavelet
are studied. It is found that for unequal polarity, the AMA increases with thickness,
and vice versa for equal polarity in the range of thickness between one-eighth and
one-quarter of the predominant wavelength. The functional dependence is, in
general, nonlinear, except in the case of unequal polarity and equal strength. The
PF decreases quadratically as a function of thickness for the equal polarity models.
For the unequal polarity models, it first increases with thickness and then decreases.
But for the unequal polarity and equal strength model (Widess' model, 1973), the
PF of the composite wavelet is found to be/3/2f o for thickness for which the thin-
bed assumption is valid, where fo is the PF of the input wavelet. Mathematical
expressions for the AMA and the PF have also been derived. To study the phase,
complex attributes are used. However, the results are not conclusive and more
study is needed.

INTRODUCTION

In the Western Canadian Sedimentary Basin, the geological formations comprising
the Cretaceous period are composed of many thin clastic layers such as interbedded
sandstones and shales. Many of these layers have thicknesses below the vertical
resolution limit with respect to the frequencies common on seismic data. A good
example is the Bluesky Formation in the Waskahigan area of West Central Alberta,
where its thickness rarely exceeds 10 m. With a P-wave velocity of about 4600
m/sec and a peak frequency of 35 Hz, its resolution limit, which is a quarter of the
predominant wavelength, is 25 m. Hence, one cannot possibly resolve the top and
bottom interfaces of the formation. Under these circumstances, stratigraphic
interpretation is employed where amplitude information is used to deduce the
thickness and lithology of the thin bed.

The purpose of our study is to investigate effective ways of delineating thin beds.
While this paper deals only with the properties of a single thin bed, our next step
will be to expand our investigation into the properties of a wavelet which is a
composite reflection of two and three thin layers. Our ultimate objective is to
develop some algorithm to delineate thin beds, using existing tools such as AVO
analysis and complex attributes.

This paper deals only with vertical incidence, and the emphasis will be on bed
thicknesses that are below the resolution limit. Two-termed reflectivity series of
equal and unequal strengths with both equal and opposite polarities will be studied.
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BACKGROUND

Many authors have discussed the responses of thin beds to vertically incident plane
wave. Widess (1973) considered a homo_geneous thin layer embedded in an infinite
homogeneous medium with higher velocity. He concluded that when the bed thins
to one-eighth of the predominant wavelength, the reflected wavelet would assume
the form ofghe derivative of the input zero-phase wavelet. He also proposed (1982)
to use AmZ/E as a quantitative measure of resolving power for the composite
wavelet, where Am is the maximum amplitude of the wavelet, and E is the total
energy of the wavelet. Neidell and Poggiagliolmi (1977) emphasized the use of
reflection amplitudes and waveforms for quantitatively analyzing thin beds of spatial
extent that were small compared to the corresponding Fresnel zone. Koefoed and
de Voogd (1980) studied the linear properties of thin layers for the thickness range
below the resolution limit. Various authors have used dlfferent criteria to define
the resolution limit of thin beds, but Kalweit and Wood (1982) showed that Ricker's
(1953) zero-curvature criterion for temporal resolution could be generalized to the
two-termed reflectivity series of equal strength and oppositepolarity as well as to
the case of equal strength and equal polarity. De Voogd andden Rooijen (1983)
derived quanmatively the response of a thin layer to a vertically incident seismic
pulse, and concluded that the reflected pulse hadthe shape of the time derivative of
the incident wavelet, and its amplitude proportional to the two-way travel time in
the thin layer.

To study the responses of a single thin bed to a vertically incident plane wave, a
simple wedge model (Fig. 1) is used. All the model synthetic seismograms are
generated by convolving a zero-phase 31 Hz Ricker wavelet with various two-terms
reflectivity series. Note that a zero-phase wavelet gives the maximum vertical
resolution compared to other phases (Berkout, 1984). Six different two-terms
reflectivity series will be studied:

(a) _, opposite polarity and equal strength

(b) -rl-,opposite polarityand unequal strength

(c) _, opposite polarity and unequal strength

(d) .u., equal polarity and equal strength

(e) .d., equal polarity and unequal strength

(f) .h., equal polarity and unequal strength

The densities and velocities used for the various models are listed in Table 1. They
are chosen to reflect the general situation in the early Cretaceous formations in
Southern Alberta. Figure 2 shows the synthetic seismograms for the six models.
Recall that our zone of interest is in the thickness range below tuning, i.e. below the
thickness equal to one-quarter of the predominant wavelength for all the models.
For the equal polarity cases, at thicknesses below one-eighth of the predominant
wavelength, the reflected composite wavelet appears to be zero-phase for all three
cases. It is about half-way between the one-eighth and one-quarter limit that the
phase of the wavelet starts to appear differently among the three cases.
Furthermore, the maximum amplitude of the wavelet for all three cases decreases
with thickness.
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For the unequal polarity cases, the maximum amplitude increases with thickness for
all the three modets. However, the wavelet in model 1A clearly resembles a 90
phase wavelet below the thickness of one-eighth of the predominant wavelength, but
for models 1C and 1B, it resembles a zero-phase wavelet in the former and an
inverted zero-phase wavelet in the latter for thicknesses below five meters, which is
about one-sixteenth of the predominant wavelength. This difference in phase can
be used to infer whether we have similar half-spaces or dissimilar half-spaces above
and below the thin bed. This result is also reported by Lange and Almoghrabi
(1988).

We shall further discuss the amplitude, frequency and phase separately.
Throughout the whole paper, the term 'thickness of interest' _ be used
repeatedly. It refers to the thickness range between zero and a quarter of the
predominant wavelength.

AMPLITUDE

Of the three attributes of a reflected wavelet, namely, amplitude, frequency, and
phase, the amplitude is the most studied one for thin bed interpretation. Various
authors (Widess, 1973; Neidell and Poggialiolmi, 1977; Koefoed and de Voogd,
1980; Kalweit and Wood, 1982; De Voogd and den Rooijen, 1983) have discussed
the relationship between the amplitude of the reflected composite wavelet and the
thickness of the bed. In particular, Widess (1973) and De Voogd and den Rooijen
(1983) have both developed mathematical expressions which relate the maximum
amplitude response of a homogeneous thin bed imbedded in a thick homogeneous
bed to vertically incident plane waves. While Widess ignored transmission loss and
internal multiple, and De Voogd and den Rooijen considered them, they both
concluded that the maximum amplitude is linearly proportional to both the bed
thickness and the reflection coefficient and is inversely proportional to the incident
predominant wavelength. But their conclusion is limited only to the case
represented by model 1A, i.e. opposite polarity and equal strength.

In Appendix A, we derive a mathematical expression which relates the absolute
maximum amplitude response of a thin bed to the thickness of the bed for the
general ease. The result is:

@abs.raax-= {(rt+rz_ 1-2{_)21z + (r2""_)= }I/_ (I)

where Oabs.max = absolute maximum amplitude of reflected composite
wavelet/absolute maximum amplitude of incident wavelet

r 1 = reflection coefficient of upper interface
r2 = reflection coefficient of lower interface
b = thin bed thickness

= predominant wavelength of the input wavelet
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Note that in deriving equation (I), transmission loss and internal multiples are
ignored. As pointed out by Koefoed and de Voogd (1980), such effects are
negligible as long as the acoustic impedance ratio between the thin layer and the
surrounding rock lies between the bounds of 0.5 and 2, which they also pointed out
is the range of acoustic contrast usually encountered in practice.

Equation (I) gives the absolute maximum amplitude response of a thin bed for the
general case. The first term within the bracket disappears for r1 = -r2, and the
second term becomes #rtrlb / _, which is the expressxon derived by Wid_ss,(19_3).
For r 1 = r2, the second term becomes zero and the first term 2rl[1 - 2a"bz/_Zd],
which gives a value of °abs max = 2rl for b = 0 as expected. The expression for
°abs max also indicates that, except for the case where r 1 = -r2, the absolute
m_'ff/um amplitude of a composite wavelet reflected from a thin bed is not linearly
proportional to the bed thickness, but rather, the relationship is a complicated
second-ordered polynomial. This implies that on exploration seismic data,
calibration of amplitude to infer thickness based on a linear relationship will lead to
erroneous results unless r2 = -r 1.

Figure 3 shows the plots of amplitude versus thickness for the six models. Both the
maximum peaks and minimum troughs are plotted. For all cases, the tuning
thickness is at one-quarter of the predominant wavelength, and is a maximum for
the unequal polarity models and a minimum for the equal polarity models. The
slightly off-maximum and off-minimum positions for some of the one-quarter
predominant wavelength arrow indicators are probably due to round-off error in the
modelling package.

For the equalpolarity cases, the agreement between the theoretical and modelling
results is goodup to a thickness about two meters below the one-eighth of the
predominant wavelength. Note also that the profile of the peak curves and trough
curves for models 1E and IF are very similar, and if one plots the peak to trough
ratios for these two models, the resulting two curves would be quite similar. But
model 1D shows a more rapidly decreasing peak curve, so that a peak to trough
ratio curve would decrease with thickness faster than the ones for unequal strengths.

For the unequal polarity, the results for model 1A has been studied thoroughly by
many authors. As expected, tuning occurs at the thickness equal to one-quarter of
the predominant wavelength, and the linearity limit for the maximum amplitude
versus thickness relationship ends at a thickness slightl_¢greater than one-eighth of
the predominant wavelength. The peak to trough ratio is also close to unity. But for
the unequal strengths models 1B and 1C, the results are significantly different. Note
that the peak and trough amplitudes for model 1B are equal to the trough and peak
amplitudes respectively for 1C. This is because rI and r2 for model 1B are equal to
r2 and r1 respectively for model 1C. Hence, the peak to trough ratios for the two
models are reciprocals, and are obviously not equal to unity. The theoretical curve
agrees with the models only up to about five meters, which is about one-sixteenth of
the predominant wavelength. The reason for this lower agreement limit compared
to model 1A is not well understood at present. We will test equation (I) further with
various parameters. In particular, we will test it against physical modelling results.
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FIlEQ_N_

The relationship of peak frequency versus thickness for a thin bed has not been
studied extensively in published literature. Lange and Almoghrabi (1988) studied
the peak frequency as a function of both offset and thickness for opposite polarities
of both equal and unequal strengths. They showed that the peak frequency first
increases with the thickness for small thicknesses, and decreases as the thickness
continues to increase. The exact behavior is dependent on the reflection
coefficients of both upper and lower interfaces. But their study is based on
modelling results. We now present mathematical expressions relating the peak
frequency to the thickness of the thin bed. The derivations are shown in Appendix
B.

The equation relating the peak frequency to the bed thickness is:

fi£rlr2mATsin(2xfcXT)]= [r12+r22.2rtr2cos (2rffpAT)][I-If---P121 (II)_fo!]

where r 1 = reflection coefficient of the upper interface
r2 = reflection coefficient of the lower interface

hY]0= peak frequency of reflected composite wavelet
= 2-way travel time in the thin layer
= 2 x bed thickness

P-wave velocity in the bed
fo = peak frequency of the input wavelet

Note that equation (II) is an exact equation in that no approximation has been
taken (Appendix B). It is only valid for Ricker zero-phase wavelets. If we make the
thin bed assumption (Appendix B), it reduces to

f_ =f_l- n2ATkf°2r_r2] where k = rl:Z+r22+2rlr2 =(rl+r2) 2 (III)

Equation (III) may be considered as the equation that governs the relationship
between the peak frequency of the reflected composite wavelet from a thin bed and
the bed thickness for all cases except when r1 = -r2. It indicates that for opposite
polarity cases, the peak frequency increases as the bed thickness increases, and vice
versa for equal polarity. But equation (III) will not be valid at thicknesses beyond
the thin bed limit inherent in the thin bed assumption (Appendix B). For r1 = -r2,
the fraction within the bracket in equation (III) will become infinity and hence
equation (III) cannot be used for this case. However, as Appendix B illustrates, a
different approach of approximation can be taken with equation (II) to

accommodate the case of r1 = -r2. The result is that the peak frequency fp is given
by:

fp = _2 f0
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This result obviously only holds for thicknesses for which the thin bed
approximation is valid. But this result is a very interesting one. Widess (1973)
showed that for r1 = -r2, when the thickness is at one-eighth of the predominant
wavelength, the reflected composite wavelet assumes the form of the derivative of
the incident wavelet. But his conclusion is graphical. Lange and Almoghrabi (1988)
showed quantitatively that, assuming Widess' conclusion is correct, one would
obtain a new peak frequency given by fo =_72fo • Hence, combining their results,
with the calculation in Appendix B foe r 1 = -r2, Widess conclusion is confirmed
quantitatively.

Figure 4 shows the plots of the peak frequency versus the thickness for the six
models. For the equal polarity cases, the modelling results and the theoretical
results agree with each other closely up to the thickness between one-eighth and
one-quarter of the predominant wavelength. Obviously, the thin-bed assumption
inherent in equation (III) breaks down at a thickness greater than one-eighth but
less than one-quarter of the predominant wavelength. Note that in all the three
cases of equal polarity, the modelling results indicate gradual decreases of thepeak
frequency as the bed thickness increases. This is indeed predicted by equation (III).

For the opposite polarity cases, Model 1A, which is the Widess' case, show good
agreement between the modelling and theoretical results. The slight discrepancy
between the two curves is probably due to round-off errors in the modelling
package. We shall discuss this further later. For models 1B and 1C, the theoretical
curves depart from the modelling curves between two and three meters. In equation
(HI), the behavior of f versus the bed thickness is very much dependent on how
close the absolute value of r 1 approaches that of r2, due to the factor_L l + r2) in
the denominator. Recall that if r1 = -r2, the value of/" is a constant (/3_Yo) for all
thicknesses up to the thin bed limit. Hence, a singularity exists in the behavior of f
in equation III as r1 approaches r2. The closer r I is to r2, the thinner the thickness
range will be in which the modelling results can be predicted by equation (III). In
our example, r I + r2 = .0704, if we had used different values for rI and r2 so that r 1
+ r2 = 0.5 for example, the theoretical and modelling curves would probably agree
with each other to tfucknesses beyond three meters.

PHASE

To study the phase of the reflected composite wavelet, we shall use complex
attributes. The reason is two-fold. Firstly, for the purpose of our research, phase
means the shape of the wavelet, not its phase spectrum. Since the instantaneous
phase and the instantaneous frequency are independent of the reflection amplitude
(Taner, 1979), they should reveal waveform changes more distinctly than regular
seismic data. Secondly, the use of complex attributes for seismic exploration has not
been discussed widely in published literature. While they were initially developed
for use in electrical engineering (Gabor, 1946); their potential use for seismic
exploration was emphasized by Taner and et al (1977, 1979) and Robertson and
Nogami (1984). As a secondary objective, we wish to explore further their
properties with respect to seismic exploration. We shall discuss the attributes
separately. The reader is assumed to be familiar with the theory of complex
attributes, as it will not be discussed here. A good reference on the subject is the
paper by Taner (1979).
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(a) Instantaneous Amplitude

Figure 5 shows the instantaneous amplitude plots for the six models. For the
unequal polarity models, the only difference in the thickness of interest is the
magnitude of the amplitude. Thus, given only one of the three plots, 5a, 5b or 5c,
one cannot differentiate which case it is.

For the equal polarity case, there are clear differences in the shape of the envelope
and the timing of the peak amplitude. For the equal strength case, the peak starts
splitting into two distract peaks at a thickness slightly under one-quarter of the
predominant wavelength. But the symmetry of the character remains throughout
the whole model. But for cases 5e and 5f, there is no splitting, but the peak shifts up
in time in 5e and down in 5f in the thickness of interest. Thus, based on the
instantaneous amplitude alone, one could possibly differentiate between the three
cases of equal polarity. Given the model as shown in Figure 1, Figures 2d, 2e and
2f, these instantaneous amplitude results are perhaps to be expected. Below one-
eighth of the predominant wavelength, there is not much difference among the three
amplitude attributes. Note that for the unequal polarity cases, the amplitude
increases as thickness, and vice versa for the equal polarity cases for the thickness of
interest. Furthermore, tuning at one-quarter of the predominant wavelength as
reported by Robertson and Nogami (1984) is observed on all cases.

(b) Instantaneous Phase

Figure 6 shows the instantaneous phase plots for the six models. As pointed out by
Taner (1979) and Robertson et al (1984), the instantaneous phase is a very effective
tool for delineating discontinuities, faults, pinchouts, angularities and events with
different dip attitudes. This is mainly due to the fact that the instantaneous phase is
independent of the amplitude. Hence, one would expect that any subtle waveform
changes will be clearly outlined by the instantaneous phase.

Figures 6d, 6e and 6f are the phase plots for the equal polarity models. For these
three models, there is no detectable phase change until the thickness thickens to
about a quarter of the predominant wavelength. This implies that either there is no
change in the wavelet shape for smaller thicknesses, or else the change is too subtle
to be detected.

For the unequal polarity models, the results are somewhat dubious. Firstly, there
are problems for the first few traces, particularly in models 1B and 1C. At present,
we do not fully understand the cause, but we are investigating the problem and
hopefully will resolve it soon. Secondly, there seems to be no phase change in any
of the three models until the thickness is about one-half of the predominant
wavelength. This appears to contradict Widess' conclusion of the composite wavelet
changing to the shape of the derivative of the input wavelet at the thickness equal to
one-eighth of the predominant wavelength. A most likely explanation is that any
phase change in these models are too subtle to be detected until the thickness is
about one-half of the predominant wavelength. But why so subtle? We will not
comment further on the reason until we test it out with more models.
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(c) Instantaneous Frequency

Since the instantaneous frequency is the derivative of the instantaneous phase, the
comments for the latter are applicable to the former. Figures 7d, 7e, 7f are the
instantaneous frequency plots tot the equal polarity cases. Frequency tuning is
observed at about the thickness equal to one-quarter of the predominant
wavelength while the frequency pattern is symmetrical in model 1D, it is shifted
downwards in 1E and upwards in 1F.

For the unequal polarity models shown in Figures 7a, 7b and 7c, frequency tuning as
reported by Robert.son and Nogami (1984) is not observed at the thickness equal to
one-eighth of the predominant wavelength. As mentioned in the previous section,
our results are somewhat dubious, and needs further investigation.

DISCUSSION

Based on the behavior of either the absolute maximum amplitude or the peak
frequency, the modelling results indicate that we can differentiate between the
equal polarity cases from the unequal polarity cases in the thickness of interest. In
Figures 3 and 4, the absolute maxamum amplitude and the peak frequency are
plotted as a function of the bed thickness. Agreement between the theoretical
predicted results and the modelling results are generally good except for model 1B
and 1C. Note the absolute maramum amplitude in equation (I) and the peak
frequency in equation (III) are also functions of the reflection coefficients r 1 and r2.
How well the theoretical predicted values agree with the modelling results would
probably depend on the values of r1 and r2. For example, in equation (III), the
larger the value (r 1 + r2) is the less 'singular' the fraction becomes, and the
theoretical values would likely agree with the modelling results for a range of
thickness larger than those shown in Figures 3b, 3c, 4b and 4c. Thus, one should
also study equations (I) and (III) as a function of r I and r2.

However, based on the absolute maximum and the peak frequency data, it would be
difficult to differentiate among the three cases of equal polarity since they behave
similarl), as a function of thickness. Nevertheless, measuring the peak to trough
ratio rmght help to differentiate them, as indicated in Figures 3 and 4. The same is
true for the three cases of unequal polarity.

For the phase, we need to investigate several problems as mentioned earlier. The
attribute plots for the equal polarity cases appear to be in order, but the ones for the
unequal polarit 7 cases are not. Nevertheless, an interesting observation is that for
the equalpolanty cases, there are more differences in the symmetry of the patterns.
For example, model 1D shows complete symmet_ for all the attributes, while model
1G and 1F show skewed symmetry in the attribute plots. But for the unequal
polarity cases, they all exhibit similar symmetry in the thickness of interest.
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CONCLUSION

Based on the modelling results, one can conclude that for the equal polarity models,
the maximum absolute amplitude in the thickness of interest decreases non-linearly
with thickness. In particular, the behavior is very close to being a quadratic function
below one-eighth of the predominant wavelength, as indicated by the good match
between the modelling and theoretical results. Their peak frequencies also
decrease quadratically as a function of thickness.

For the unequal pol .an"tycases, the maximum absolute amplitude in the thickness of
interest increases with thickness, the behavior being linear for model 1A. For
models 1B and 1C, the functional dependence, i.e. whether it is linear or quadratic,
is probably also a function of how different r 1 and r2 are. The peak frequency for
models 1B and 1C first increases and then decreases with thickness. For model 1A,
the peak frequency is 2372 times the input peak frequency. Furthermore, as
discussed in Appendix B, Widess' conclusion of the reflected composite wavelet
changing to the derivative of the input wavelet at one-eighth of the predominant
wavelength is verified quantitatively in an indirect manner.

FUTURE WORK

In real seismic data, vertical incidence may only be a good approximation for short
spread lengths and deep targets. For long spread lengths and shallow targets,
conclusions from the study of vertical incidence may not be applicable. Therefore,
the second step will be to extend the work to offset-dependent modelling.

For many areas in Southern Alberta, many reflections from Cretaceous formations
are composite reflection of several thin layers. Results from studying two-termed
reflectivlty series may not be applicable to three-termed or more reflectivity series.
Hence, the third step is to extend our investigation into the properties of a wavelet
which is comprised of more than two reflections.
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Appendix A

Let us derive equation (1). Our approach will follow that of Widess' method (1973). To

the first order of approximation, the central portion of the Ricker zero phase wavelet can be

approximated by a sine wave whose maximum amplitude is A i. Choosing the centre of the

thin bed as the zero time reference, we have

" *=_i = rlc°s (t+h')22r"+ r2c°s (t--_VT_aVTd (A-a)

where At= amplitude of reflected composite wavelet

b = thickness of the thin bed

V = P-wave velocity within the thin bed

Td= predominant periodof the wave

r1 = reflection coefficient of upper interface

rz= reflection coefficient of upper interface

(rt+r2)cos 2/Kcos 2z_b+ (r2-rl)sin T_ain 2_b... ¢= Td M
where )_d= predominant wavelength of the wavelet

sin 2_1_ = 2_1_

Now, we make the thin bed. approxlm_tion. For sufficiently small b, _ _ and

_o_z_ =1-_sin_t2=i-_I _

¢ ; (rt+r2Ii'_)2]c°s 2rot"dr"r'_27_bsinTa,,z ,, 2_tTa,))

=Mlcos _dd + M2 sin 27t_Td.

wherel _MI J

For absolute maximum _,
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tan 2/rt _ M2 and t = _-_-%an"1[M2/
'" Ta MI 2_ tMl l

•". _abs. max. = MlCOS2_-_-T-&tan'l(M.2/]+ M2 sin 2__-_tanl/M2/]
latz_ tm-l/J Ta[2_ /M-T]J

M1 M2 _= M1- -- + M2: -- NFM12+M22
MS/-_t2+M22 _M22

•". (_abs.max.= {(rl+r2)2[1-2(_)212 + (r2-rl)2(_l_)2 }1/2

Appendix B

Let us derive equation OlI).

The specu'um of a two-termed reflectivity series is

X(f) = rle 2gifz_h+ r2e27rifAtz

where q = reflection coefficient of the first term

r2 = reflection coefficient of the second term

Ah = two-way traveltime from time zero to first term

At2 = two-way traveltime from time zero to second term

f= frequency

.'. X(f) = [rlcos (2_fAtt) + r2cos (2_fAt2)] + (rtsin (2rffAtl) +r2sin (2_:fAt2)]

The corresponding amplitude spectrum is then
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A(f) : _/[rlcos (2_fAtl)+ r2cos (2_fAt2)]2+ [rl sin (2rffAtl) + r2sin (2nfAt2)]2

= _/r12+r22+2rlr2[cos (2_fAtl_ZOS(2_fAt2)+sin (2rffAtl)sin (2_fAt2) ]

= _/r12+r22+2rlr2cos (2rffAT)

where AT=At2-Atl=two-way traveltime in the thin layer.

The amplitude spectrum of a Ricker zero-phase wavelet with peak frequency f0 i s

(Ricker,1953)
f2 f 2

Ar(f) :(_0) e<f°)

If R(f) is the amplitude spectrum of the convolution of the two-termed reflectivity series

with a Ricker zero-phase wavelet, then

R(f)= A(f)Ar(f)

_0 ;e{_)'_/r,2+r22+2rlr2cos (2_fAT)

Taking the first derivative of R(f) with respect to f, we have

dR(f) / f/2 -/--f/_ -4r_rff2ATsin (2rffAT)
=1_1 e_f0/ ,--'--7_ ,

df _ 0/ 2'qr12+r22+2rlr2cos [2rffAT),

+ _/rl2+r=2+2rlr2cos (2rffkT) [ 2 -2 ]
0110 _ 0 ! _ 10110

dR(f)dR(f)=o =o
For peak frequency, df . Setting df and simplifying, we have

f_02rlr2nATsin (2nfpAT)] =[r12+r22+2rlr2c°s (2xfpAT)If_ - 7ffp121]_f0/fo]
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where fp= the peak frequency.

.'. fr_rlr2nATsin(2nfpAT)]=[r12+r22+2rlr2cos(2nfpAT)][1-1ff--I 2] (B-a)
L _t0/ d

The above expression is an exact expression relating the peak frequency of a wavelet which

is the convoluted product of a two-termed reflectivity series with a zero-phase Ricker

wavelet to the time separation of the two reflection spikes, namely, to the thickness of the

bed.

We now make the thin bed approximation. For sufficiently small AT,

sin (2nfpAT) -- 2nfpAT, and cos (2nfr_T) -- 1

- wherek:fr0! ]

[ kf°2 +k]... fp2 = L2rlr2/_2AT2fo 2

fp = f_'2_2AT2rkr2f2 + k']1/2

=f_ 1.I 2rc2AT2f°2rlr2] "1k ]

f_ n2AT2f°2rlr2]= 1 - -_ ] , to the first order of approximation

The above equation gives the peak frequency as a function of thickness for a thin bed for all

cases except when rl=-r2. For this special case, k=0 and the derived expression for f0

cannot be applied. However, a different approach of approximation can be taken in

equation (B-a).
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Putting rl=-r2 in equation (B-a), we have

ft_-rl2_ATsin (2_fpAT)] = [2rl2-rl2cos (2_fpAT)] [1- {f--EP/2]tfo/J

-fp=ATsin (2/ffpAT)= 211- cos (2nfpAT)] [1-/fP/2]fro/J

= _2sin 2 (rffpAT)][1-[f-E/2]tfol J

Taking the thin bed approximation, where for sufficiently small AT, we have

sin (27ffpAT)= 2gfpAT, and sin2 (rffpAT) -- (rffpAT

.'. 2fp2/t2AT2-- 4g2fp2AWf{f_)2- 1]

This result implies that as the bed thins to below a thickness for which the thin bed

-f0
approximation is valid, the peak frequency is equal to !/2 and remains constant for that

range of thickness. But Lange and Almoghrabi(1988) quantitatively showed that, if we

assume that Widess' conclusion of the wavelet changing to its derivative at one-eighth of

the predominant wavelength thickness is correct, we will indeed get V_ f°- Hence, the

calculations above indirectly proves the validity of Widess' conclusion.
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Table i. Lithology, layer velocities, and layer densities for
six models

Model Lithology Modelled Lithology Modelled Lithology Modelled

Vl(m/s), d(g/cc) V2(m/s), d(g/cc) V3(m/s), d(g/cc)

IA non-porous sand porous sand non-porous sand

4267, 2.502 3048 2.300 4267, 2.502

IB silt porous sand non-porous sand

3800, 2.430 3048 2.300 4267, 2.502

IC non-porous sand porous sand silt

4267, 2.502 3048 2.300 3800, 2.430

ID porous sand silt non-porous sand
3048, 2.300 3560 2.430 4267, 2.502

IE porous sand shale non-porous sand
3048, 2.300 3353 2.350 4267, 2.502

IF porous sand silt non-porous sand

3048, 2.300 3800 2.430 4267 2.502

HMC/aw/(T-LITHOL)
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Figure 5
Instantaneous amplitude
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Figure 6
Instantaneous phase
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Figure 6

Instantaneous phase
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Figure 7

Instantaneous frequency
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