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Poststack migration of P-SV data

Mark P. Harrison

ABSTRACT

This paper deals with the application of poststack migration to P-SV data. It is
shown that P-SV diffractions in a vertically-inhomogeneous medium are hyperbolic to first
order, and an expression for their migration velocity can be obtained. The resulting
velocities are 6-11% less than the P-SV RMS velocities. In synthetic P-SV data it is found
that asymmetric dispersal creates a strong splitting of diffraction tails at shallow depths.
This splitting is removed by application of depth-variant P-SV DMO. Migration of the
DMO-corrected synthetic P-SV stack data using a conventional phase-shift algorithm and
the migration velocity function adequately collapses diffractions, whereas migration using
the RMS velocity function gives significant overcorrection.

INTRODUCTION

The use of appropriate normal moveout (NMO) corrections, coupled with P-SV dip
moveout (DMO) allow the construction of stack sections that are zero-offset in the
kinematic sense. An obvious extension to converted-wave processing is to apply some sort
of post-stack migration to these sections, in order to properly position dipping reflectors
and collapse diffractions. Various authors (e.g., Garotta, 1986) have shown migrated P-
SV stack sections, but the question of the applicability of P-SV post-stack migration has
not yet been addressed, except for the constant-velocity case (Eaton and Stewart, 1989;
Eaton et. al., 1991). The purpose of this paper is to establish the shape of P-SV
diffractions from point scattering in a multi-layered medium, and derive a velocity function
which will properly migrate them. As the migration process can be thought of as a 2-D
deconvolution process in which the point-response function is removed (Brouwer et. al.,
1985), adequately migrating a diffraction curve is equivalent to removing the point-
response function, and ensures correct migration of all other data.

To test the accuracy of the migration velocity equation presented here, poststack
migration is applied to synthetic data sets containing reflections from a number of point
diffractors. These data were stacked using both the depth-variant binning method (Eaton
et. al., 1990) and P-SV DMO (Harrison, 1990). The resulting sections are migrated using
the migration velocity equation developed here as well as the RMS stacking velocities
(Tessmer and Behle, 1988). For the remainder of this paper the depth-variant binning
method will be abbreviated as DVBM.

THEORY

Consider conversion from the point diffractor shown in Figure 1. The point is at
distance x away from the surface CCP position, where both the source and receiver are
located. Energy travels from the source to the point along the path segments ai with
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FIG. 1. Zero-offset raypaths traveled through a layered Earth from a point diffractor.

velocity cti, and back from the point along the path segments bi with velocity 131.The total
traveltime t is

n n

t=_ai+_ bi .
i=l (xi i=l _i (1)

For the downward path, the ray parameter Pl is constant, and for the upward path the
second ray parameter P2 is constant. The total horizontal distance traveled along both up-
going and down-going paths is equal to the offset x;

n n

X = PlZ OqZi -- P2Z _iZi

i=l _ i=l _-p2_ 2 (2)

Because the ray parameters are seen to satisfy different equations, they must, in general, he
different. This means that the upward and downward raypaths are also different, and the
exploding reflector model (Loewenthal et al., 1976) does not strictly hold for P-SV data.
In terms of the two ray parameters, equation 1 can be rewritten as
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n n

i=l o_i_-p_oq 2 '= l_iffl--P2_[3i2 (3)

To obtain an approximate solution for t, a Taylor's series expansion can be performed
about x = 0 (the small diffractor offset case);

t + 2 _dx2/x=o 61dx31x=O (4)

where O(xn) represents terms of order x4 and higher, and to is again the two-way vertical
traveltime given by

I1

i=l / Oti_i ]"

n

= E'Ci.
i=l (5)

'Ci is the two-way vertical traveltime through the i'th layer. The total derivative of t w.r.t, x
is

dt _ _t dpl + _t dp2
dx Op, dx _ dx (6)

Differentiating equation 2 w.r.t. Pl and 112gives

n

dx = _ O_izidp, '= (1-P_ltxi2)3/2 (7)

and

dx = _ _izi .@2 "= (1-p2132)3/2 (8)

Differentiating equation 3 w.r.t. Pl gives

_t _'_ O_iZi dx

_pl - p' _ (1_o2"_2)3/2 - Pldp, '"= - _,--i. (9)

where equation 7 has been used. This gives
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Ot dp_

Optdx = pl. (10)

Similarly
Ot @2 -

_p2 dx pz, (11)

and equation 6 becomes

dt = p_+p2.
dx (12)

Equation 12 restates the definition of the ray parameter as the horizontal component of the
slowness vector (Slomick, 1959). At x = 0, both ray parameters are also zero, i.e.,

:°" (13)
Differentiating equation 12 w.r.t, x results in

d2t _ dp_ + dpz
dx2 dx dx

=[i =_1 1 _(/'iZi ]-1+ [_._ --_iZi .]'1(-plCti) 3 ] Li=_(1-p_i 2)3'2] (14)

where equations 7 and 8 have been used. At x = 0, equation 14 becomes

/ d2t ] = (tiZi + _]i Zi
Idx2Jx --0 i=l

n

Z _i_]i "l;i
i=l

Y )
n 2 n 2

0t'i_i "gi _ Oci_i "[:i

O'i+_i ]ki_ _i +13i (15)

Differentiating equation 14 w.r.t, x gives

d3t _ d2p_ + d2p 2
dx 3 dx2 dx2
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[¢,o:,_I [£_'°.-----_]
L_,---3pl_ - 3p_

t_ (_-p_,;)_J L_'_J (16)
and

la3+/

[dxat--_-]x=O= O. (17)

Using equations 13, 15, and 17, equation 14 becomes

E Oq[_i '_i

t_-to.,.( .+ .
ki--_ ai+[_i 2:i q:i- /_i=l Oh+13i (18)

Squaring both sides of equation 18 gives

f Jxto E IXi_i '_i

t2 = _+x i=l +0(4).

ki=l (Xi+_i /\i=l {Xi+_i (19)

Comparing equation 19 to the standard equation for the diffraction hyperbola,

t2 = _ +4x2
v 2 ' (20)

where V is the migration velocity, it is seen that for P-SV data

4 (___ {Xi2_i n (Xi_i2 )

V = 2 ki--_ _i +_i "gi_E

'gi
/ Xi=l (_i+_i

n

tO E (Xi_i 'ti
i=l (21)

For the single-layer case, where n=l, equation 21 reduces to

i = 1/1+i_
V 21o_ -_]" (22)
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Equation 22 is the same result given by Eaton et al. (1991).

Equation 19 shows that, to first order, P-SV diffraction curves are also hyperbolic,
and that a P-SV stack section can be migrated using the velocity function defined by
equation 21. This argument is only correct in a ray-theoretical sense, but it does give
justification to applying post-stack migration to P-SV data.

Equation 21 can be compared to the P-SV RMS velocity function given by Tessmer
and Behle (1988);

4VRMS = i=l
to (23)

The form of the RMS and migration velocity equations is seen to be significantly different.
For the case of constant Vp/Vs ratio, the ratio of RMS velocity to migration velocity
reduces to

VRMS _ Ot+13

_ T+1 =_.

(24)

The function defined by equation 24 is plotted in Figure 2 for a range of Vp/Vs ratios. It is
seen that the migration velocity is always less than the RMS velocity for realistic values of
7.

METHOD

Two sets of synthetic data were made to evaluate the migration velocity equation.
The geometry parameters used in generating synthetic shot records are summarized in Table
1. The total data volume in both cases consisted of 41 records of 121 traces each.

Each source record was constructed by performing 2-D ray-tracing through the
medium to compute the response to a number of point diffractors located at various depths
beneath SP 181. The first sourcepoint was located at SP 101, and the last at SP 261.
Diffraction amplitudes were computed using the following equation derived by Knopoff
(1959);

_sin 0 Ao

A(r) cz(I+2T2) r (25)
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FIG. 2. Ratio of RMS velocity to migration velocity as a function of the Vp/Vs ratio for
the constant-velocity case.

Table 1. Parameters used in generating the synthetic test data.

Groupinterval 25 meters
Sourceinterval 100meters
Tracesper record 121
Traceoffsets 0 to 1500m, 25 m increment

split-spread records
Nominalfold 15
Databandwidth 8-35Hz
Recordlength 3500ms
Sample rate 2 ms

............................................................................................................

where

A0 = initial wavelet amplitude,
r = length of souree-to-receiver travelpath, and

0 = angle between the incident and reflected rays.

The first data set was created using eight point diffractors positioned at depths
ranging from 250 m to 2.0 km, embedded in a medium with P-wave velocity 3000 m/s and
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FIG. 3. Sample raypaths for diffracted energy received by two geophones. Diffractors
are positioned at 250 m depth intervals, ranging from 250 m to 2000 m.

S-wave velocity 1500 m/s (Figure 3). The resulting traces were moveout corrected using
ray-traced NMO and scaled to compensate for spherical divergence. Several of the these
records are displayed in Figure 4.

After NMO and gain, the data were stacked using DVBM and P-SV DMO, giving
the results shown in Figures 5 and 6. The DMO section is seen to better preserve the
diffraction tails, and was used as input to a phase-shift migration program (Gadzag,1978)
using both the RMS velocity function of equation 23 and the migration velocity function
defined by equation 22. The diffractions are seen to be overmigrated using the RMS
velocities (Figure 7), but successfully collapsed using the migration velocity (Figure 8).
For this simple case equation 22 is exact, and the results shown in Figure 8 are the best that
can be obtained for the geometry and wavelet bandwidth used.

As a more appropriate test of equation 21, a second set of synthetic records was
created. The model for this case consists again of a number of point diffractors, but
embedded in a layered media having thirty-two different velocity intervals. The layer
thickness and velocity values are based on a blocked sonic log from the Carrot Creek field
of Alberta (Nazar, 1990), and are plotted vs. two-way P-SV time in Figure 9. Also shown
is the ratio of RMS and migration velocities, from which it is seen that the RMS velocities
am about 6-11% greater than the migration velocities. Sample records are shown in Figure
10, again with ray-traced NMO and geometric spreading compensation applied.

The second data set was stacked using DVBM (Figure 11) and depth-variant P-SV
DMO (Figure 12). The DVBM stack shows significant distortion and attenuation of the
earlier diffractions. These early diffractions are also seen to split into two components.
This splitting is due to the asymmetry of dispersal that occurs between data from
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FIG. 4. Sample synthetic P-SV records for the constant-velocity case (every second trace). The

data have been NMO corrected and scaled for spherical divergence.
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FIG. 5. Constant-velocity data stacked using DVBM (every second trace).
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FIG. 6. Constant-velocity data stacked using P-SV DMO (every second trace).



I_-1 km ---_

261 221 181 141 101
0.0

1.0
"--i
mm

3.0
FIG. 7. DMO-stacked constant-velocity data migrated using the RMS velocity function (every

second trace).
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FIG. 8. DMO-stacked constant-velocity data migrated using the migration velocity function

(every second trace).
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FIG. 9. Velocity modelused to generatethe second syntheticdata set, plottedas a functionof
total two-way P-SV traveltime. Also shown is theratio of RMSand migrationvelocity
functions forthis model.
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FIG. 10. Sample synthetic P-SV records for the variable-velocity case (every second trace). The
data have been NMO corrected and scaled for spherical divergence.
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FIG. 11. Variable-velocitydata stacked using DVBM (every second trace).
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FIG. 12. Variable-velocity data stacked using depth-variant P-SV DMO (every second trace).
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sourcepoints to the right of the diffractors and those to the left (Harrison, 1990), which
leads to differences in apparent stacking velocity. The DMO section is again found to better
preserve the diffraction tails, and the diffraction splitting is eliminated.

Phase shift migration was applied to the DVBM and DMO stack sections using the
RMS velocity function, giving the results shown in Figures 13 and 14. In both cases the
diffractions have been overmigrated. In addition, the first five diffractions on the DVBM
section have been smeared horizontally by migration, and artifacts have been created.

The DVBM and DMO stack sections were also migrated using the migration
velocity function (equation 21). The migrated DVBM section (Figure 15) again shows
both lateral smearing of the shallow diffractors and the creation of migration artifacts.
Migration of the DMO section (Figure 16) has successfully imaged all but the last two
diffractors, which are slightly undermigrated. In further testing it was found that these two
diffractions required a 2% increase in migration velocity to be completely collapsed.

DISCUSSION

The large amount of diffraction splitting that is seen in Figure 11 strongly suggests
that DMO should be applied to P-SV data with any significant amount of dip. This splitting
is a problem which does not occur in reflection data, and could imply that DMO can be
beneficial to P-SV data in areas where it gives no noticeable improvement to conventional
data.

The undermigration of the last two diffractors in Figure 16 can be understood by
refering to Figure 4. There are seen to be large changes in interval velocity after 2 seconds,
where these diffractors are positioned. Because the migration equation is a low-order
approximation to the zero-offset travelpaths, it is probable that the large variations in ray
parameter that would accompany large velocity changes make the higher order terms in
equation 19 significant. The degree of undermigration is, however, seen to be small.

Although the migration velocities differ from the RMS velocities, it appears from
Figure 9 that reducing the RMS velocities to about 94% of their value gives a reasonable
estimate of the migration velocities for the deeper data. This could explain why poststack
migration has been successfully applied to P-SV sections in the past. It should be noted
that the RMS-to-migration adjustment factor is in addition to the usual 90% reduction that
would be applied to stacking velocities to obtain migration RMS velocities. This gives an
expected total reduction of approximately 20% for the shallow data and 16% for the deeper
data.

CONCLUSIONS

It is shown here that P-SV diffractions in a vertically-inhomogeneous medium are
hyperbolic to first order, and an expression for their migration velocity can be obtained.
The resulting velocities are 6-11% less than the P-SV RMS velocities. Asymmetric
dispersal was found to create in synthetic data a strong splitting of diffraction tails at
shallow depths. Depth-variant P-SV DMO is able to remove this splitting and better
preserve the diffraction tails. Migration of the DMO-corrected synthetic P-SV stack data
using a conventional phase-shift algorithm and the appropriate migration velocities
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FIG. 13. DVBM-stacked variable-velocity data migrated using the RMS velocity function (every
second trace).
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FIG. 14. DMO-stacked variable-velocity data migrated using the RMS yelocity function (every
second trace).
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FIG. 15. DVBM-stacked variable-velocity data migrated using the migration velocity function
(every second trace).
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FIG. 16. DMO-stacked variable-velocity data migrated using the migration velocity function
(every second trace).
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adequately collapses diffractions, while migration using the RMS velocity function gives
significant overmigration.
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