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Bulk properties of composite Cosserat media

Donald T. Easley

ABSTRACT

The following is a review of continuum mechanics in elastic media, where couple-
stresses are included in the analysis. This is then followed by a proposal to study the
properties of a composite of this type of material. The purpose of the analysis is to
determine the importance of this type of description, in composites, as compared to normal
analysis where couple-stresses are ignored.

INTRODUCTION

This note represents basically a rewriting of a portion of Mindlin and Tiersten's
(1962) paper. I will put the work in index notation which seems to be clearer. An attempt
will be made to keep the development in general curvilinear coordinates (which does not
necessarily add to the clarity). The sections of concern are the development of the Cosserat
equations which govern the behavior of continua where couple-stresses are included
alongside the more familiar foree-stresses, the development of constitutive relations
(Toupin, 1962) which in the present analysis concerns the response of a Cosserat medium
to deformation, the linearization of these relations, and the analysis of wave propagation
through such a medium with emphasis on plane waves. Finally a proposal will be given to
study the effects of a composite of such materials and determine the possibility of using
Cosserat equations as a better description of bulk properties than the ordinary equations.
The first section will be developed in detail, in the remaining important results will be stated
without detailed development. Of special interest is the case where in each of the
constituents the effects of couple-stress may be weak, and therefore the mechanics are
adequately described by the normal couple-stress-free equations. But the bulk properties
are effected by the micro-geometry of the inclusions, which may gives rise to the
possibility of Cosserat equations being a better set of desciptive tools.

Force and Couple Stresses in Elasticity (Cosserat Equations)

It can be shown that any system of forces acting on a rigid body can be broken
down into a single force which acts on an arbitrary point of the body plus an appropriate
couple (Symon, 1971). A couple can be represented as a system of two forces which are
equal in magnitude but opposite in direction and do not act directly against each other (i.e..
they do not have the same line of action). Otherwise, one could just as well replace these
two forces by a force with magnitude zero, which is not very informative in any way.
Couples provide a twisting effect to a mechanical system.
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In continuum mechanics the assumption has been made that a similar scheme can be
use to describe the forces acting on a material volume V, enclosed by an orientable closed
surface S' as shown in Figure 1.
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Figure 1

The material outside of V exerts forces on the material inside V through the surface S'. If
we concentrate on a small region of the surface as outlined by the oval in figure 1, the net
influence of the material in the direction of the outward unit normal vector n consists of a

force per unit area tn, and a couple per unit area ran. In the interior of S' action-at-a-
distance type of forces can influence the material in V. These forces will be assumed to be
proportional to the mass acted upon; again we will simplify these forces at each point in V
into the now familiar force per unit mass f, and a couple per unit mass c. This is
represented in figure 1 where forces are illustrated as line segments ending in a single
arrowhead and couples are portrayed with two arrowheads.
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We shall now consider the motion of the material in the reference volume V due to

these forces and couples. The motion will be governed by the equations of conservation of
mass, balance of momentum and moment of momentum and the conservation of

mechanical energy. The equations in index notation of these properties are respectively :

d/v pdV=0 (1.1)

_fvVi°dV=I tidS+fv_pOv, (1.2)

, (1.3)
and

/v(lgijvivJ÷dV=I(gljtvj÷l ' ijkg k;ds (1.4)
/.

+ JV (gij V i f_ + _- Ci £ijk glk _l)p dV

where

d __ material time derivative,
dt

p -= mass density,

n -= outward normal of surface S'

X i =-- position vector component,

gij -- metric tensor,

eijk = fg- eijk =- permutation tensor,

such that, g = det[glk]= ]gl_ and eijk -=permutation symbols,

vi _= ddtx i = ;_i = material velocity,

and U ---internal energy per unit mass.
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We are using the material (Lagrangian) frame of reference, which means the
material time derivative can be taken within the integral sign. One direct consequence of this
is equation (1.1) can be written as:

 IfdV--(dPdV--0--pdt (1.1a)

By the tetrahedron argument, as summarized in appendix A, we can recast the force
per unit area and couple per unit area respectively in the following form:

t_=t'Jnj (1.5)

and mi=mijnj. (1.6)

The surface integral in equation (1.2) can be transformed by use of equation (1.5) and the
divergence theorem in the following manner:

It dS:I iJnj s:Itijj v (1.7)
where

"" = atiJ + / i./trJ+ [J/t ir
tU'J 3xJ /rJ/ /UJ

Ox,

{ill = glk[ij, k]

= 1/Ogik _gjk _gij/
and [ij,k] 2/Oxj 4 Ox i - Oxk]"

Substitution of equation (1.7) into equation (1.2) and using equation (1.1) results in the
following, after rearrangement of terms:

fvtij,j+fi _,i dV=O
P P

Since the volume is arbitrary, we have the result:

tij,j + t5 p _ ,,)ip = O, (1.8)

tij,j + fip = 9i Por
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this is the usual force-stxess equation of motion. In the same spirit of casting the integral
equation (1.2) into its differential form (1.8) we shall do the same for the rest of the
equations. First we shall concentrate on the separate parts of equation (1.3) as follows,

_dtfv _.jkxJvk p dV = fv ei.jk( vJvk p + xj 4k p + xJvk f) ) dV

= f £i.jkXj _,kp dV
Jv (1.3a)

the last equality is due to the antisymmetric nature of the permutation tensor and equation
(1.1a), also

I£i.jk jtkndSx =Iei.ik itklldSx n =f(_..jk "tkl l)ldVxJn ,

Ieij_xJtk X! I jkxJtk " '
= . I1+ ltkbdv : £i. " ll+_jkXJ, ltkldv

, (1.3b)

the first equality uses equation (1.5), the second uses the divergence theorem, and finally

I midS = I miJnj dS = _ mi!jdV_v , (1.3c)

where equation (1.6) and the divergence theorem is used respectively. Substitution of
equations (1.3a-c) into the conservation of momentum equation (1.3) yields:

/ve'.jkXJ(_I + fk_ vkp) dV + £ijkx!l.tkl+ cip + mi!jdV = 0

the first integral of which is identically zero, as can be verified by direct comparison with
equation (1.8). Since again the volume is arbitrary the integrand of the second integral must
equal zero. This results in the equation:

_..jkX!ltkl + cip + mi!j= 0
or

ci.jktkJ + cip + mi!j= 0 (1.9)

Equation (1.9) is the couple-stress equation of motion, and it provides an alternate
expression of the anti-symmetric part of the force stress tensor as:

mr) (1.10)ttij]=- 1 Eldexd,J(Eefg tg_ = 1 Gldexd,j(cep + ef
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The proof that equation (1.10) actually furnishes the anti-symmetric part of a tensor is
given in appendix B. Note, the anti-symmetric part of the force stress tensor is identically
zero if both the body couple and divergence of couple-stress are zero; therefore, under this
condition the force stress tensor is totally symmetrical. The total tensor can be expresses as
the sum of symmetric and anti-symmetric parts as follows:

tij=t(ij)+t[ij], (1.11)

where the term with superscripts in round brackets is the symmetric part of the tensor.
Substitution of equation (1.10) into equation (1.11) and subsequently into the equation of
motion (1.8) results in the ahemate form of the equation of motion:

t(iJ) + 21_.EiJemef,fj + f_ + 1 eiJce,.p = _)ipd 2 J . (1.12)

Note, in equation (1.12) if the body couple and couple stress term are zero we revert to the
standard equation of motion which is the start of most analysis. A further reduction can be
achieved on equation (1.12) by considering the scalar of the couple stress given by:

= miJxi,j, (1.12a)

and the deviator of the couple stress of the form:

m{ijl = miJ _1 _1 xi,J (1.12b)

We will now show that equation (1.12a) has no contribution to equation (1.12), thus only
the deviator given by equation (1.12b) will have any effect in equation (1.12). Consider the
expression:

ij -- e,f
ei.!e[ffaxe'_,fj = e..e[m f x + _ _:Yl,J

=
= £ijem ej= 0

where the last equality is due to the fact that covariant differentiation of invariants (scalars)
is commutative, in other words, we have the following symmetry property:

_,eJ= _q,j(.

We can thus substitute equation (1.12b) into equation (1.12) to arrive at a form which more
truly represents the independent parameters constrained by this equation. Equation (1.12)
becomes:

t(iJ! +lEiJm{ef_l+fSp+l_ij e "J 2- ec,jp=_)119 (1.13)

We will now cast the equation of conservation of mechanical energy (1.4) into its
differential form, to achieve this end we shall manipulate separate terms in the equation
independently and after recombine them into our desired form. Start by considering:
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dfv (1 gij vi vJ+ U)p dV = f (gij vi x)J+ lJ)p dVJv , (1.4a)

where the dot represents material time derivatives, secondly:

I gij tinvJ dS = l (tiJ nj) vi dS
f

= / (tijVi),j dV
gv

-- / ti!j V, + tij Vi,j
dV

(I .4b)

The f'trst equality is from equation (1.6), the second is just the divergence theorem and the
last is just the distributive law of covariant differentiation; finally we consider:

I 1 rain Eijkglk Vi,ldS = 1 lmir nr £ijkglk _1 dS

: I 1 (mir eijk glk _l),r dV

= I _ (eijkmirr vJ'k+eijkmir vJ"rk)dV (1.4c)

The steps taken above are almost identical to the previous and will not be elaborated upon.
We can now incorporate equations (1.4a) - (1.4c) into equation (1.4) and upon
rearrangement we get:

_v 1) p dV = _ {(tiJ + p fi -p v'_ vi + E:ijk(l mirr +p Ci) vJ'k+ tiJ Vj,i + 1 e-ijkmir vJ'k} dV

which upon comparison to equations (1.8) and (1.9) simplifies to:

[ U P dV = fv {tiJ vj'i - 1 I_ijk(_'rs X_ltsl) vJ'k+ 1 Eijkmir vJ"rk}dV

we make further note that:

i r tsl vJ,k= (1 EiJk _i.lstsl)EijkE.rsX,l vj3

= t[jk]Vj,k

the last equality can be seen by direct comparison with equation (l.lO), hence:
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or in differential form:

l_Jp = t(iJ)vj,i + 2!-Eijkm irvJ'rk (1. 1 4)

Note:

X!l£ijkvJ,kr-- _ijkVJ,ki= 0,

which is a trivial consequence in rectangular Cartesian coordinates. This means the scalar
of the couple-stress again has no effect in equation (1.14), a result which can be seen by
substitution of (1.12b) into equation (1.14), therefore we can rewrite (1.14) in the
following more informative way:

l_I I9 = t(iJ)v j, i + 21--£ijkm{ it}vJ"rk. (1.15)

Equations (1.9), (1.13) and (1.15), the Cosserat equations, leaves the antisymmetric part
of the force-stress and the scalar of the couple-stress indeterminate. This means the number
of independent variables controlled by these equations are (9-3)=6 from the symmetric part
of the force-stress and (9-1)=8 from the deviator of the couple-stress, for a total of 14
independent variables. This becomes important when we try to relate the response of such a
medium to deformation in the next section.

Toupin's constitutive relations

Constitutive relations here will be concerned with the response of a Cosserat
medium to deformation, which mean other effect such as temperature and temperature
gradient will not be considered. The deformation will be described with respect to some
initial reference configuration called the material frame. The material frame position will be
designated by the capital letter X and all references to that frame in terms of subscripts and
superscripts will also be in capital letters. The arc distance in the spatial and material
(Eulerian and Lagrangian) frames are respectively:

(ds)2=gkldxkdxj (2.la)
and

(dS)2=GKLdXKdXL (2.1b)

where the metric tensors are self defining in each of the equations (frames). Now consider
an infinitesimal directed line segment in the material frame and its image in the spatial
frame, they will be related by the following formula:
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dxk= xkKdxK (2.2a)
or

dxK=xKkdx_, (2.2b)

where the semicolon designates ordinary partial differentiation. Taking the inner product of
equations (2.2a) and (2.2b) we arrive at:

(ds) 2 = gklXk;KX1;LdXK dxL (2.3a)
and

(dS) 2 = GKL XKk xL1 dxk dx' (2.3b)

The difference of the squared length of line elements containing the same material points in
the deformed and undeformed bodies gives a measure of length change due to deformation.
This can then be used as a variable to determine the amount of energy stored during
deformation (I will not be considering systems which generate energy during deformation).
With this in mind we write the following formula:

(ds)2 - (dS)2= (gkl XkK XI;L - GKL) dXK dXL

= (gkl-GKLXK;kxL1)dxkdxI (2.4)

The bracketed terms after the two equal signs provides a measure of length change in the
material and spatial frames respectively. We shall give these quantities (Lagrangian and
Eulerian strain tensors) special symbols, as defined below:

2EKL= 2ELK= gk] xkK xl;L - GKL (2.5a)
and

2ekl= 2elk= gkl-GKLXKkXL;1, (2.5b)

the symmetry is obvious, due to the symmetry of the metric tensor. When couple-stress is
not taken into account the strain tensors as defined by equations (2.5a) and (2.5b) are
sufficient to describe the specific energy during deformation, but as can be seen this
provides only 6 independent components while we have seen in the case when couple-
stresses are considered there exists 14 degrees of freedom. R.A. Toupin (1962) has shown
that an appropriate second variable is:

KIJ = -£iKL EJK,L, (2.6)

the scalar of which is zero giving a total of 8 independent components. The 8 independent
components from equation (2.6) and the 6 independent components from equation (2.5a) is
sufficient for our purpose. We now assume the specific energy can be expressed as a
function of these two tensors as:

U = U(EIJ,Krs), (2.7)

which implies:
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00=POU ]_IJ+P _U I_RS
c)EIl _KRs (2.8)

The object is to put the conservation of energy equation (1.15) into the same double inner
product form. After some troublesome manipulations this can be done giving rise to:

P _j = (_IJ ]_IJ + _/RS I_RS , (2.9)
where

_q/IJ = IXI,t Xl,i m{ij} Xj,i, (2.9a)
and

_PlJ= XI,i t(iJ)Xj,j- _(I,dA(Ij[ , (2.9b)
such that

AIj = £IKL XKk m {_1XR,r xL, j XJ,RJ (2.9C)

Before proceeding we have to note that:

(X XI'JI_ij = 0, (2.10)

where et is an arbitrary constant, this is due again to the fact that the scalar of K is zero and
therefore not all nine components are independent. We can therefore add equation (2.10) to
equation (2.8) without changing anything then subtract the result from equation (2.9) to
get:

0EIJJ [ _KRs (2.11)

If we assume all term within the square brackets of equation (2.11) are independent of the
terms they are dot producted with then we can write:

_IJ= P OU

0El j, (2.12a)
and

3U
_/RS = D + c¢ X R'S

_KRs (2.12b)

By noting that all terms in equation (2.12b) have zero scalars we can now finally set the
constant o_to zero. Now we can solve for the symmetric part of the force-stress tensor and
the deviator of the couple-stress tensor from equations (2.12a) and (2.12b), giving:

t(iJ)= i _U xj,j+pGNLEINMOU x(i xj)
p x,l_EIJ ,I ,JMOKJL , (2.13a)

and
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m{iJ} = p _i,_ xi,i _U xj J
- _KIJ (2.13b)

Equations (2.13a) and (2.13b) are one form of Toupin's constitutive equations.

Linearization

We will now linearize the equations previously developed, this linearized set will
form the basis from which all future development will stem. We shall begin by assuming
the specific energy can be expresses in terms of a Taylor series in powers of E and K and
also allowing the undeformed state to be one of zero stress and density with subscript 0:

p0U = 1 aQRST KQ R KS T + bQRST EQR KST + cQRST EQR EST +..
D (3.1)

where a,b and c are constant material tetradics and the higher order terms are understood to
have higher order polyadics for coefficients. The linear terms are zero from our zero stress
assumption above. We willdefine the material displacement as:

u=x- X, (3.2)

which we will constrain to have a small material gradient in the following sense:

luA<<1.

This implies the material gradients and spatial gradient can be taken as approximately equal
and the density remains approximately constant, the distinction between material and spatial
frame can then be ignored. In this regime we can use the follow approximation for the
material strain dyadic:

Ei j=l (ui, j+ uj,_ =E ij (3.3a)

which in turn gives the approximation for:

1 t_.lm

Kij = -Eilm e lj,m = -2 _'t:i Ul'jm + Eilm uj'lno
= 1 l_:Im

2 _t Um,jl= _ij (3.3b)

Substitution of approximations in equation (3.3a) and (3.3b) into equation (3.1) yields:

P°U = W = 21-aqrSt_qr_st + bqrst6qr_st + 1 cqrstEqrE st + "" ", (3.4)

which can be used with the general constitutive equations (2.13a) and (2.13b) to give:
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m{ij} = ODW

OD_ij (3.5a)
and

t(iJ)= ODW i ODW ,nj

ODEij + £'mn _--_lm ul

which upon the further assumption that u{ nj is negligible can be written as:

t@= ODW

ODEij. (3.5b)

By ignoring all terms of higher order we can write the following set of linearized equations:

hqrst= ,_ + 1 .-qrst.- =W= aqrStXqrXst+,., "-qr_.st _-_ =qr'-st, (3.6a)

t(iJ)= ODW_ cijst6 st + bijStXsl

oDEij , (3.6b)
and

m(ijl= ODW= aijStXst + bqriJe ql
ODXij (3.6c)

Equations (3.6a),(3.6b) and (3.6c) are the general linearized constitutive equations. If one
considers all the symmetries imposed on the material teradics we will find that '%" has 36
independent components, "b" has 48 and "c" has the usual 21 independent components. If
we now restrict the material to be centrosymmetric-isotropic we wind up with the following
much simpler system of equations:

" 2,n, ,,,ij ,,,.. + _ (E iy + .U.E ij 6 ..W = 2rl g 'j Xij + 'l _ A,J, '.1, (3.7a)

t(iJ)= ODW= _ E kkgij + 2/.t _ ij

ODEij , (3.7b)
and

m(iJ]= ODW= 4"q _ij + 4.ll,xJi
OD['tiJ (3.7c)

where k and I.tare the familiar Lame constants while rl and "q'are new constants due to the
introduction of couple-stresses. If we now substitute equations (3.3a) and (3.3b) into
equations (3.7b) and (3.7c) we arrive at:

t(ij)=k uk,kgij+ 2p.(uiJ+ uji), (3.8a)
and

m (ij}= 4rl £ilm Um,jl + 4rl'Ei lm Um,jl. (3.8b)
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Now we can substituteequations(3.3a),(3.3b),(3.8a)and (3.8b)intotheequationof
motion(1.13)whichtakesontheform:

..... ,mks+ "+ I " _ "
I"1 ![J,j + (_'+1 't) I_.,ji + 1] e.jk_lm _...,s P fa 2- _jk ckj p -- p iJ' (3.9)

this equation will be the starting point for further analysis.

Wave motion

The equation of motion (3.9) in the absence of body forces and body couples has
the form:

IX t_.:!j + (_,+IX) t].,ji+ I] _.jk_.lm _.'.m,ksS= p iJi (4.1)

We now proceed in the usual manner by taking divergence and curl of the equation of
motion (4.1), resulting in:

c21¢P.JJ=_, (4.2)
and

c__i,jj__ 12_i,jj=_J, (4.3)
where

(P = _,i, _i = Eijkuj,k,

12= +2ix),=
tx P P.

As can be seen the dilatational wave given by equation (4.2) is identical to couple-stress
free case while the rotational case is quite different. If I = 0 we would recover the usual
rotational wave equation. To examine the effects of this extra term on wave propagation
consider a plane rotational wave of the form:

_/i = d i A exp[i k (ni xi- c t)] = diA exp[i(ki xi- cot)], (4.4)
where

d i _=-unit vector,

A _-scalar amplitude,

k -xwave number,

ni =-unit wave normal,

c ---phase velocity,

and co-=angularfrequency.

SubslStution of (4.4) into (4.3) results in the following two equations:
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co2= c_k 2 (1-12k2), c2= e_ (1-12k'2); (4.5)

which we can use to solve for k2, giving us two roots, which we will denote as:

ilc22 , (4.6a)
and

11c_ . (4.6b)

Since 1 is real we can see that kl is real while k2 is purely imaginary, this means there are
two rotational plane waves one propagating and the other non-propagating and both are
dispersive. The propagating wave will have a group velocity given by:

do) 1 +212k2

dkt = c2 _/1+ 12k_. (4.7)

Formula (4.7) shows the group velocity as a monotonically increasing function of Ikl.

Composite Cosserat media: A proposal

Now that we have looked at the development of continuum mechanics in Cosserat
medium, and noted the differences this type of medium as compared to the case where
couple-stresses are ignored, it is important to say that according to Mindlin and Thiersten
(1962) there does not seem to be much experimental evidence that couple-stresses play an

important role. This suggests that constants like I and rl are probably small, therefor the
ordinary theory is sufficient. If we now look at the bulk properties of a composite Cosserat

medium the effects of microgeometry may make the effective Iand 1"1values less negligible.
I propose to use the techniques brought to my attention by Dr. D.J. Bergman in a series of
lectures on composite media given at C.O.F.R.C. (1991) to investigate this possibility.
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Appendix A
The Cauchy Tetrahedron Argument

The result of the following reasoning is to show that if an arbitrary function q0 is
dependent only on the position xi of the surface S' on which it is defined and the normal to
that surface n,then this function can be recast in terms of an inner product between a tensor

defined from (pand the unit normal. The function could also be dependent on time. Note

this will not hold in many instances, such as when q0is dependent on the curvature of the

surface as well. The quantity of concern is not the value of 9, but rather it is the differential

q0ds,which can be approximated by the average value of ¢pin a small area As multiplied by

the area; we will write this as _As.

We shall now construct a tetrahedron by introducing locally an orthogonal right-

handed system xi with origin O, such that the area &s consists of the region defined by the

plane normal to n and the intersection of this plane with the orthogonal axis. The points of

intersection are labeled A i. The altitude from the origin O to the point P is of length h. Each

of the surfaces bounded on two sides by the axes and the third by the plane normal n are

labeled as Asi, where the superscript i determines the axis to which the plane surface is
perpendicular. This is shown in figure A-1.

X 2

As3

A 2
n

As I I
S

lh

X1
A 1

X3 AS 2

Figure A-1
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The components of n in this local coordinate system is just the direction cosines given by:

ni = c°s(/AiOp). (A- 1)

The altitude h is given by:

h=OA(i)ni. (A-2)
(no summation implied as indicated by brackets)

The volume of the tetrahedron can be written as:

Av --½h AS={-OA i)ASi (A-3)

Substitution of equation (A-2) into (A-3) and simplifying results in:

Asi = ni As. (A-5)

We can approximate the integral _ of 9 around the close surface of the tetrahedron by the
sum of average values it takes at each plane face multiplied by the area of the face (note, the
direction of the unit normal is crucial and determines the sign of the sum). This can be
written as:

Ig =_(n) AS- _(_1) As1_ _(_i) As2. _(_3) As3 (A-6a)

where x' is a unit vector m the direction of coordinate axis xi and this sum becomes exact

as the volume goes to zero. Substitution of equation (A-5) into equation (A-6) results in:

V=[9(n) - _(_') n,-_(_i) n2- _(_3) n3]AS (A-6b)

In many instance we can show that the integral _ is also dependent on the volume enclosed

by the surface, in particular if_ is proportional to the volume AV, or

lit= C AV (A-7)

where C is the constant of proportionality.This is always true when tractions and couples
per unit area are concerned. Combining equations (A-6b) and (A-7) then substitute in
equation (A-3) yields:

[_(n) - _(_i) nl- _(_i) n2- _(_3) n3] As = C AV = C 1 h AS,

upon division by As we get:



189

[_(n) - _(_1) nl - _(_i) nz- _(_3) n3] = C 1 h. (A-8)

In the limit as h approaches zero the formula becomes exact and the left hand side goes to
zero which results in:

¢p(n)= q0(_1) nl + qo(xi) n2 + q0(x 3) n3. (A-9)

If we now define 9i = q)(_i), then we can rewrite equation (A-9) as:

qo(n) = qo1ni, (A-/0)

which is our desired conclusion.



190

Appendix B
Anti-symmetric part of a Tensor

Here we shall show the anti-symmetric part of a tensor can be written in the form
given by equation (1.10) in the main part of the paper. For convenience the formula is
reproduce here with only index symbols altered, as follows:

t[mnl=- 2_ E'_Irxn'q (_'jk xk'ptpj) kl. (B-l)

The proof consists of applying basic tensor manipulations to equation (B-1) to arrive at a
simpler tensor formula, this formula is then shown to be the formula for the anti-symmetric
part of a tensor in one particular coordinate system; since the original formula is in tensor
form, if it is true in one coordinate system it is true in all curvilinear coordinate systems. To
begin we rewrite (B-I) as:

t[mnl_ _ 1 .ms _ _lt Xn "
-- 2 _' "-,sqr_,- ,t glr£ijkXkptPJ

= _ ½ ginS gqt gir esqreijk xnt xkp tpj

= _ 1 emti £ijkXnt Xkp tpj. (B-2)

Thepermutationtensorandpermutationsymbolarerelatedbythefollowingformula:

Eijk = f-ff eij_, (B-3)

and the permutation symbol has the following well known relationship expressed in terms
of Kronecker delta symbols:

e mti eijk = 5_ t = 57 5tk - 5tj 5nk, (B-a)

so upon substitution of (B-3) into the equation (B-2) and then using equation (B-4) we
arrive at:

1 --m --t

t[mnl=- _ g (Sj bk- 51 5r_) xnt Xkp tpJ

= 21--g (tpm Xnk Xk,p - tpt Xn,t xmp)

= - + g (t pm Xn,p - tpt xm,p)

= - 1 g (tnm- tmn)

= 1 g (tmn_ tnm) (B-5)

Now we shall use a rectangular Cartesian coordinate system where g=l and equation (B-5)
takes on the familiar symmetric form:

ttml = 1 (tmn_ pro)
2 (B-6)

which ends the proof.


