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ABSTRACT

Even though tensors have an existence independent of what frame we choose to
represent them in, it is inevitable that we need to utilize the numbers representing the
tensor in a certain frame of reference. The elastic tensor is no exception; if we choose
the wrong frame of reference the tensor components will in general be all non-zero,
which is cumbersome to work with, even though correct. If we choose the preferred
frame we gain two things: minimization of dependent non-zero elements and
information as to the symmetry orientation represented by the elastic tensor. We
propose to approach the problem in a statistical manner.

INTRODUCTION

We will use the definition that a tensor T of order m is a multilinear functional

on an n dimensional vector space Vn equipped with an inner product ( •, - ). These are
all abstract quantities. The properties of T are determined by choosing an arbitrary set
of m vectors from Vn such as {v1,v2,.. • ,v m }, and examining the scalar defined by
T(vt,v2,.. • ,Vm) and doing this for all sets of vectors {Vl,V2,. • • ,Vra}. In general we
choose an orthonormal basis in Vn say {xl,x2,'" ,xn}, then represent the vectors
above as v i = (vi,xj) xj for i = 1,...,m, summation on repeated indices being in effect.
With this in mind we can write:

T(v 1 v2,..., Vm) = (V1,Xjl)(V2,Xj2)'''(Vm,Xjm) T(x A, xj2,---, x j), (1)

where we have relied heavily on the multilinearity ofT. To cast equation (1) in a more
familiar form we can define the following scalars:

Tjti_..jm = T(Xjl , X j2,... , Xj_n) , (2)

v_;= (vl,xjl) ,

V_2 = (V2,Xj2) ,

v_ = (v,_,xj).

The first scalar in equation (2) is just the commonly used tensor component and the rest
are the components of the vectors. All of these scalars are defined only with respect to
the basis we chose. Thus equation (1) can be rewritten with the aid of def'mition (2) as:

T(Vl V2,..., Vm):V_'vJ22-..v_ TjdT:..j,; (3)
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Now consider the case when we have a different orthonormal basis {X'l,x'2, ••• ,x'n}.
Then definition (2) and equation (3) give us:

T("xil, x"i2, ' "" , x'i,n) -- "Tili2:..i. = _'11_'2""" _'_ Tjti2...j,., (4)
where

are just the direction cosines relating one frame to the other. Equation (4) shows that the
components of a tensor can be quite different from one frame to the other, and also
provides a means of going from one to the other. The elastic tensor is no different. Its
components are directly related in the same fashion to the frame of reference we choose
to express it in. Many people have devised means to take an arbitrary representation of
the elastic tensor and determine the symmetry properties of the underlying tensor. Most
notable is the work of Backus (1970) who decomposed the representation of the elastic
tensor to a series of vector bouquets and showed that, by direct observation of the
symmetry of these bouquets, one can determine the symmetry of the underlying tensor.
A second method is described by Baerheim (1992). He notes that the symmetric
mapping of the asymmetric part of the representation of the elastic tensor is diagonal in
the preferred frame of reference for all crystal classes except triclinic, monoclinic and
trigonal cases. Thus the diagonalization of this matrix will yield eigen-vectors which
should represent the preferred coordinate system.

These are both good methods with some points which can be built upon. The
method of Backus requires visual inspection, which can probably be automated, and
there is no work which shows how stable the technique is to small perturbations. The
method of Baerheim is direct but is not universally applicable, and I have not seen the
effects of small perturbations to this method. Thus I propose to study a statistical
method which should be universal and not sensitive to small perturbations.

STATISTICAL DETERMINATION OF THE
PREFERRED FRAME OF REFERENCE

FOR ELASTIC TENSORS

I will use the standard two-index notation for all the development, but all bold
face capital letters will represent the tensor which underlies the malrix representation. A
reference for the two index notation can be found in Baerheim's (1992) paper. I will be
developing the idea for the cubic symmetry class. The cubic elastic tensor represented
in the preferred frame of reference has the following form in two index notation:

C1] C12 C12 0 0 0
C12 CH C12 0 0 0

C = C12 C12 Cll 0 0 0
0 0 0 C44 0 0 (5)

0 0 0 0 C44 0
0 0 0 0 0 C44

This show the cubic tensor has only three independent elements. Now consider the
tensor is some arbitrary frame of reference. In general its representation will no longer
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be appear as simple in appearance as equation (5) but will have many non zero entries
as:

All A12 A13 A14 A15 A16
A]2 A22 A23 A24 A25 A26

A= A13 A23 A33 A34 A35 A36 (6)
A14 A24 A34 A44 A45 A46
A15 A25 A35 A45 A55 A56

A16 A26 A36 A46 A56 A66

In order to f'md the frame which causes equation (6) to become closest to equation (7), I
propose to form the new matrix below:

Bll B12 B12 0 0 0

B]2 B]I B]2 0 0 0

B = B12 B12 Bll 0 0 0 (7)
0 0 0 B44 0 0

0 0 0 0 B44 0
0 0 0 0 0 B44

where

Bll = _ (All + A22 + A33)

B44 = 1 (A44 + A55 + A66)

and B12 = 3_ (A12 + A13 + A23)
o

We now form the difference E =R(B - A), which I will call the error tensor. The

symbol R (-) represents the rotation from one flame of reference to another as given by
equation (4); this is where the distinction becomes important that the rotation is actually
performed on the tensor and not its matrix representation. The rotation can be
represented by Euler angles or some other set of three appropriate variables. Let the

matrix representation of E have the elements Eij. We now form the scalar:

6 6

=E E w,je , (8)
i=lj=l

which shall be called the error term. At this point we are free to use a number of

optimization techniques such as GLI to minimize equation (8). Weights wij have been
introduced to add additional conu:ol. The template matrix B can be customized for all
symmetry systems in the same manner as above, and so is not restricted to cubic
symmeu'y. When equation (8) is minimized, the resulting B will be our closest
representation of A within the confines of this fixed symmetry system. We can also
examine the error matrix E to see how the error is distributed and the magnitude of the
individual terms. The Euler angles will define the new coordinate system, which
provides information as to the underlying symmetry of the tensor A. The use of
methods like GLI should also stabilize the method to small perturbations.
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CONCLUSION

A new method to obtain the preferred reference frame of an arbitrary elastic
tensor is proposed. Compared to earlier methods, it has the advantage that: small
perturbations will not strongly influence the estimated representation, errors are clearly
seen and easily adaptable to all symmetry classes.
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