
Effective Seismic Processinq Under UNIX

Effective seismic processing under UNIX

Mark C. Lane

ABSTRACT

The UNIX operating system is becoming more prevalent as a seismic
processing environment. Tips for increasing productivity under a UNIX workstation
system are presented.

INTRODUCTION

Workstations --small, powerful computers--are becoming more and more
popular in the geophysical community. Many of these computers run the UNIX
operating system. Although UNIX has enjoyed increasing popularity over at least the
last decade, it is a new environment for many geophysicists. UNIX differs in many
ways from the mainframe operating systems which many of us are accustomed to
using. This paper describes some features of UNIX which will help new users to
understand how the system operates and consequently to increase their productivity.

UNIX is famous for its man pages. These are good places to look for
information about new commands or to check for special features of common
commands. Typing man <command name> will give a concise description of the
command <command_name>. The-command man man will give additional
information about the man command itself.

System Configurations

Although UNIX is appearing on many new mainframes and supercomputers,
this paper will deal with techniques which are more applicable to workstations and
minicomputers, particularly in a networked environment. This is most likely to be the
type of UNIX system geophysicists will be using now and in the near future. There
are many ways to configure workstations. Although they can be used in isolation, it is
usual to have several interconnected workstations with a connection to a mainframe,
supercomputer or minicomputer. This connectivity is a relatively new concept for
many users. Those accustomed to a single mainframe handling all tasks may find it
beneficial to understand networked systems. This paper discusses single user, multiple
users of a single computer, and multiple users on multiple connected computers. This
mirrors a mental model progressing from a local (mine) to a global (ours) viewpoint of
the system.

SINGLE USER SYSTEMS

A single user view of a system has one computer totally dedicated to one user.
In this case the user has no concerns about contending with anyone else for resources;
the user alone pays the price of his inefficiencies. A user may run several jobs

CREWESResearchReDort Volume4 (1992) 26-1



Lane

simultaneously, each competing for system resources. By providing the system with
information about the importance of these jobs, the user can make more efficient use of
the system. A good goal is the maintenance of rapid interactive response while still
using the computer fully when the interactive job doesn't need the resources.

As an illustration, consider a user who starts a seismic processing job, then
wants to edit a parameter file ('job deck' to us old-timers) to set up for another run.
The editor will compete on equal footing with the processing job unless the system puts
different constraints on these jobs. A good solution is to put the processing job in the
background and to reduce its priority (be nice). This will make the editing much
faster and still let the background job make full use of the system during pauses in
editing (even between keystrokes). A quick way to do this uses the nice command and
output redirection. For example, suppose an application is called 'myap' and it
accepts the argument 'myarg'. The user could execute the command nice +15 myap
myarg > outflle.list &. This will start the application with reduced priority (higher
nice value). The nice value of 15 is reasonable for background processing jobs,
although the system will accept a range of values, man nice should show the range
for a given system. The '>' is the redirection operator; it will send the output which
would normally appear on the screen into the file 'outfile.list'. The '&' will put the job
into the background, immediately returning control of the computer to the user, who
can then start editing.

For more complex commands or command sequences the bateh command is
appropriate. For example, suppose the user has a file called 'myjobs' which contains a
list of commands, one per line. Each command may be preceded by nice +15 to
reduce its priority. When the command batch myjobs is executed, several things
happen. The batch job is queued, then run in the background when system load
permits. The commands in the file are then executed sequentially in the order they
occur in the file 'myjobs'. This method is useful when jobs need to operate
sequentially, passing data from one to the next. An additional feature is that command
outputs which would usually be sent to the screen will be mailed to the user upon
completion of all the jobs. man mail will give an overview of the mail system (often
called e-mail, for electronic mail). The command atq will show the queue's
contents, including job numbers, atrm <job_number> will cancel a job while it is
still in the queue.

On the subject of canceling jobs it should be noted that, on occasion, a user may
want to kill a job which is running. Generally this involves two steps: identifying the
offending job and killing it. For jobs which were started and put into background
using the & command, the jobs command will provide information, including job
numbers, kill %<nn> ,where <nn> is one of these numbers, will kill the associated
job. Note, however, that the 'jobs' command will not work if a user logs out and then
in again. In that case ps ugx will show all the users jobs and give a number (PID) to
identify the job. kill -9 <PID> will kill the job identified by the number <PID>.

The user who forgets to nice a job can rcnice it once it is running by using
renice +15 <PID>, where <PID> is obtained as above, from the 'ps' command.
Note that programs can be written to automatically 'nice' themselves. 'ps' can reveal
the 'nice' values of running jobs.

26-2 CREWESResearchRePort Volume4 (1992)



Effective Seismic Processinq Under UNIX

MULTIPLE USERS ON A SINGLE SYSTEM

When many users share a system, the procedures discussed above apply. In
addition, though, users can seriously affect each other's jobs. One user running a large
job without reducing its priority can seriously decrease the performance of other users'
editors or interactive processing. Because UNIX is a relatively rules-free system, user
cooperation and tolerance is required to maximize system performance. A few jobs
running at normal priority can effectively stop jobs which have a 'nice' of 15. A good
guideline is to put long jobs in the background at reduced priority using 'batch' and to
let interactive jobs run at normal priority.

As more users start jobs on a system, the available memory per user decreases.
UNIX offers virtual memory, in which the system uses disk storage to simulate
additional memory. This allows the system to continue operating, but at a considerable
slowdown. Memory access times are generally quoted in nanoseconds while disk
access times are quoted in milliseconds; worst case slowdowns on the order of 10 000
to 1 000 000 are possible. In these extreme cases the system is said to be thrashing.
Working on a thrashing computer feels like typing on an electric typewriter without
plugging it in! Because of this, it is often better to run large jobs sequentially rather
than simultaneously. It is also possible for the system to run out of swap space, the
portion of disk allotted to virtual memory, in which case jobs fail immediately. An out
of memory error message is indicative of this situation. On the Geology/Geophysics
workstation cluster at the U of C, workstations can generally run only one commercial
seismic processing job at a time.

MULTIPLE USERS ON MULTIPLE CONNECTED SYSTEMS

With many users and many connected computers, the situation can get quite
complex. Not only do users have to worry about other users' jobs on the system, but
their own jobs on other systems. In this situation the main concern is to reduce the
transfer of data over the network connecting the computers. Although these nets may
be considered fast for many computing applications, seismic data can easily swamp a
net. Typical local nets are of the broadcast type. This means that every computer
receives all messages sent by every other computer. Thus, only one computer can
transmit at a time, effectively blocking every other computer's communications. The
best way to reduce this load is to process data on a computer which has a disk directly
connected to that computer. This eliminates transferring data on the net, both on input
and on output.

A worst case scene might involve a user on workstation A, running an
interactive filtering program on computer B, which is accessing data on a disk
connected to workstation A and displaying results back on A. Data must move from A
to B then back to A in order to be displayed on A. Then the data would move from A
to B for filtering, then back to A for storage. Even with only two computers and disks
this method is highly inefficient. If the user logged onto workstation A and ran the
program on A, then no network traffic would be involved. Although this situation may
seem a bit contrived, it does occur. With windowing user interfaces, it is easy to lose
track of one's location on the net.

An ideal situation would involve several users, each doing interactive
processing on their own workstations, accessing data on a disk on that workstation,

CREWESResearchReDort Volume4 (1992) 26-3



Lane

with a low priority background job running on each workstation. Here each computer
would be fully utilized, yet interactive processing would get preferential treatment.
Although this may not be possible in practice, it represents a goal to strive for.

CONCLUSION

In a system of networked workstations running the UNIX operating system, it
is important for users to be aware of how the system treats their jobs. This can prevent
inadvertent and/or unnecessary contention for resources. A few simple functions can
improve the system performance, giving priority to interactive jobs, yet running
background jobs efficiently.

26-4 CREWESResearchReport Volume4 (1992)


