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ABSTRACT

A simple mechanical model for a vibrator is given. The equations governing the
dynamic evolution of such a model vibrator are derived. A set of these model vibrators
may be coupled through an elastic half-space with the vibrators upon the free surface.
The equations describing the coupling of the vibrators through the half-space are
derived. The final coupled system of equations provides a means to more realistically
model the wavefield generated by a set of interacting vertical vibrators.

INTRODUCTION

Since the field experiments of Edelmann (1981) there have been other field
experiments with VSPs and some physical modeling experiments which indicate the
existence of significant shear-wave energy propagaing vertically downwards generated
by two vertically polarized surface sources in counterphase. Theoretical analysis of the
situation based on the assumption of stresses in counterphase (Dankbaar, 1983) or
interacting line sources without horizontal coupling (Tan, 1985) fails to explain the
existence of the normally incident shear-wave energy; however, if the simple
assumption of displacements in counterphase is made (Easley, 1992) shear-wave
generation is a direct consequence. Both the stresses and displacements in counterphase
are rather unrealistic impositions on vibrators and serve only to indicate the possible
range of phenomena to be expected. Tan's (1985) approach is far more general. He
uses a simple line-vibrator model. A set of these simple vibrator models are placed
parallel to each other on a frictionless surface of an elastic half-space. The radiation
patterns calculated by Tan also fail to show the existence of normal incident shear-
waves. I believe the lack of shear waves propagating in this direction is in part due to
the frictionless-surface assumption. I have used a methodology similar to Tan's and
derived the coupled equations for a simple vibrator model over an elastic half-space
allowing interactions in all three perpendicular spatial directions. I have made the
assumption that plate rotation is negligible and the vibrators are in welded contact with
the surface. With these assumptions a set of coupled equations is derived which allows
the modeling of the wavefield within the elastic half-space along with the dynamics of
the vibrators.

THEORETICAL DEVELOPMENT

Mechanical model of vertical vibrator

CREWESResearchReoort Volume5 (1993) 17-1



Easley

The equation of motion of a spring-mass-dashpot system which approximates
the mechanics of a vertical vibrator will be developed. Figure 1 represents the system
we will be using, with displacements and forces only in the vertical direction shown.
Properties in this direction will be subscripted by the numeral 3.

Reference Plane

..... t_zl-.... 1-
Z

M = Hold-down mass.
m=Massofplate, F3
k = Spring constant,
b = Damping constant,
f = Force acting between the hold-down mass and the plate,
F3= Force exerted on the plate by the elastic half-space, in the vertical direction.
Z = position of center of mass of hold-down mass,
z = position of center of mass of plate,
Zo= equilibrium position of center of mass of hold-down mass,
ZO=equilibriumposition of center of massof plate.

FIG. I Coupled spring, dashpot and mass model of a vertical vibrator.

When the system is in equilibrium the centers of mass of the hold-down mass

and the plate are in positions Z ° and z 0 respectively. I will assume the system has
reached the equilibrium state prior to the time t = 0. Since in equilibrium there is no net
force acting on the system, the gravitational force due to the hold-down mass and plate
must be equal to but opposite in direction to the vertical reaction force of the elastic half-

space. Let the vertical force supplied by the half-space be F ° when the system is in
equilibrium. This means:

(M +m )g = -F 0 (la)

which is a restatement of the equilibrium condition of this system. The forces in any
other two perpendicular directions are assumed to be zero at equilibrium. Symbolically
this can be written as:
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F° = F°= O, (1b)

where we have taken two arbitrary mutually perpendicular directions on the horizontal
plane to be represented by subscripts 1 and 2. The 1,2, and 3 axis are assumed to form
a right-handed rectangular coordinate system. Another relation of the equilibrium state
comes from considering the hold-down mass being solely supported by the spring; by
using Hooke's law this can be expressed by:

k (z o - Z ° - L) = -Mg, (2)

where L is the length of the unstressed spring. The equilibrium equations provide a
means of testing the dynamic equations that will be developed. When a dynamic force
fit) is applied between the hold-down mass and plate, the two masses will in general
move from their equilibrium position. Let the displacements of the center of mass of the
hold-down mass and plate in the vertical direction from equilibrium be respectively:

U3 = Z - Z °, (3a)

and

u3 = z - z °. (3b)

As the masses are displaced, the distance between them can change. The change in this
distance can be written as:

z - Z = u3 - 0"3+ (z° - Z°). (4)

Substitution of equation (2) into equation (4) results in:

z -Z= u3 - U3 - _--_-g+ L. (5)

As a first step towards developing the coupled system of equations of motion for the
two masses we will consider all the forces acting on each mass individually. The forces
acting on the plate ,-we:

mg = gravitational force, (6a)

-k (z -Z - L) = force due to the spring, (6b')

-b (_- 2) = frictional damping force from the dashpot, (6c')

f(t) = applied force between the masses, (6d)

and
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F3(t) = force due to the elastic half space. (re)

Forces (6b') and (6c') can be put in terms of displacement by using equation (5) as:

-k (it3 - U3 ) + Mg , (6b)

and

-b (/)3- L}3). (6c)

The corresponding forces acting on the hold-down mass are

Mg = gravitational force, (7a)

-fit) = applied force acting between the masses. (7b)

k (u3 - U3 ) - Mg = force due to the spring, (7c)

and

b (tJ3- 03) = frictional damping force from the dashpot. (7d)

Forces (6a) to (6e) and (7a) to (7d), along with Newton's second, law can be used to
obtain the equations of motion in the vertical direction for the plate and hold-down mass
respectively as:

"lJ3m= (m + M)g + f + F3 - k(u3 -/-]3) - b(ti3 - /J3), (Sa)

and

LI3M = -f + k(u3 - U3 ) + b(/)3 - /_/3). (Sb)

These dynamic equations reduce to equation (1 a) in the static situation. The only forces
acting in the other two orthogonal directions are assumed to arise solely from the elastic
half space. Let the forces in the 1 and 2 directions from the elastic half space be
respectively F] and F2. By assuming that the vibrator acts as a solid unit to forces in
these directions, which means Ul = U1 and tt2 = U2, then Newton's second law in
these directions takes on the form:

(M + m) _1 = F1, (8c)

and

(M + m) _i2 = F2. (8d)
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We have assumed that the vibrator remains vertical throughout the experiment.
Muhiflying equation (8a) and (8b) by m and M, respectively, taking the difference and
substitute a few variables, we arrive at the following equation:

"0"l.t +gb +vk =H, (9)

where

V = //3- 03",

g= mM
m+M '

and

1-[ =f+ mg---F3+ Mg .

Equation (9) represents a damped harmonic oscillator with displacement v and forcing

term rI. The first step we take in solving equation (9) is to consider the solution of

homogeneous form (H = 0) of equation (9) (Symon, 1971), that is:

v = A e-_ cos(c%t +O), (10)

where A and 0 are constants of integration which are determined by boundary

conditions and co1= '7r_g - _ such that o30= and "/ - As a second step

towards the solution of equation (9), we will find the Green's function VG associated
with it. The causal Green's function is defined to be the solution of the following
problem:

f_dP" + vGb + vGk =_(t- "0, (tla)

such that:

By causal, I mean there will be no response until the impulse at t = x. The initial value
problem given by equation (1 la) can be cast in another form by incorporating a jump
condition as:

_c,,P +@,b +vGk =0. (llb)

such that:

t e (Reals: t _ "_},

with the following additional conditions:
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VGcontinuous at t = x,

and

lira ')G(X+ e) - Oc(z- e) = 1.
c_0

The causality condition is still enforced. The Green's function for equations (I la) and
(l lb) (Stackgold, 1979) is:

vc(t,_) = H(t- x) ¢-_ sin(t01 [t- _]) = VG(t- _), (12)
(old-

where the Heaviside function H(t ) is defined to be:

{1 :t<O}H(t)= 1 :t>0 "

Before proceeding to writing down the solution for equation (9) it is necessary to state
the following. Equation (9) can be broken into two equations, namely:

Vl_ + Vlb + Vlk = Xl(t), (13a)

and

V2_ + f2b + v2k = x2, (13b)

with:

nl(t) = _,rF3(t) +f(t),

and

I-t FO
x2 =-_ 3 +Mg ,

where the force due to the elastic half-space, F3(t), is partitioned into constant

equilibrium restoring force term F ° and a term AF3(t) representing a perturbation from
equilibrium. This can be represented by:

F3(t) = F0 +AF3(t). (13c)

Note that F° was defined in equation (la). Due to the linearity of equation (9) its
solution can be written as:

v = vt + v2. (I4)
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By direct substitution of equation (1 a) into the definiuon of/1:2 in equation (13b) we can
see that nz is identically zero. Since the unique solution of the homogeneous problem
with homogeneous initial conditions is the trivial solution, we have:

v2 = 0. (15)

We will use the Green's function of equation (12) to obtain a particular solution of
equation (13a). The form of this solution is:

vl(t) = f_ VG(t- X) rc](x) d'_. (16)

If we assume, with no loss of generality, that tc1 is zero before t -- 0, we can rewrite
equation (16) in the following manner:

i t e'_t" sin(c0 a [t- x])Ttl(x) (17)

%]

Vl(t) = 0)11.1"
d'_.

Now that we have particular solutions to equations (13a) and (13b), we can use
equation (14) to obtain a particular solution to equation (9) then add the solution of the
homogeneous equation given by equation (10) to get the general solution of equation
(9).The general solution would then be given by:

v(t) = e-_t-_] sin(m] [t- x]) _l(X) dx + A e-_ cos(mlt +0), (18)
o o_tg

in which A and O are arbitrary constants to be determined from boundary conditions.
Following the technique above, we shall solve another intermediate problem. By
adding equations (8a) and (8b) and defining a few new variables we get:

fb = _,(t), (19)

where

w = u3m + U3M,

and

X(t) = (m + M) g + F3(t).

As in the previous differential equation we begin by solving two related problems; first
we solve the associated homogeneous problem given by:
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_0=0;; (20)

secondly we solve the associated causal Green's problem below:

_G = 8(t- x), (21)

such that

-¢o< t,'_< oo.

The general solutions of differential equations (20) and (21) are respectively:

wo = At + B, (22)

and:

wG = H(t - "c)(t - "c), (23)

where H(t) is the Heaviside function previously defined with A and B being constants
to be determined by boundary conditions. As before we will now split the linear
equation (19) into two separate problems. The sum of the solutions of the two related
problems is the solution of equation (19). The two problems are:

Wl - _'1t2 (24a)2 '

and

_z = ;L2(t), (24b)

where

w = wl + w2 and ;L(t) = X1+ ;Lz(t),

such that

X1= (m + M) g + F0 and X2(t) = AF3(t).

Noting that X1 is identically zero, by equation (la), particular solutions of equations
(24a) and (24b) are respectively:

Wl(t) = 0, (25a)

and

w2(t) = (t- "0 _.2(x)dt. (25b)
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Equation (25a) can be obtained by inspection of differential equation (24a) while
equation (25b) was obtained by using the Green's function of equation (23) in equation
(24b). Since w = wl + w2, we can construct the general solution for equation (19) by
adding the general solution to the homogeneous equation wo(t) to the particular
solutions Wl(t) and w2(t), giving:

w (t) = w2(t) + wl(/) + wo(t),

or

f0 t
w (t) = (t - "c))_2(x) dx + At + B, (26)

where A and B are again constant to be determined from boundary conditions. By
manipulating the definitions ofw and v in equations (9) and (19) we can obtain:

u3(t) =-'_[w---_) + v (t)], (27a)

and

U3(t) = J.l[w (t) + v (t)]. (27b)Mtm

Assuming the relatively reasonable initial conditions of U3(0)= u3(0)= 0 and

/-)3(0) = ti3(0) = 0 then using equations (18) and (26) we can expand equations (27a)
and (27b) to its final form:

m_----_0l

u3(t) = (t- "_)2_2('c) -t-e"_t" '_]sin(c01 [t- '_])/tl(x) d_:, (28a)
M col_

and

_ g('(t-'_)_.2(x) +e-_t-x] sin(col[t-'_])rq('t) d't, (28b)
U3(t) - M-Jo m coll-t

where

tel(t) = mg---z_3(t) +f(t),

_,2(t) = AF3(t),
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such that

co0=,_f'_, ), =__ _= mM and F3(t)=F °+AF3(t).2g ' m +M

By direct comparison of equations (8c) and (8d) to equation (19), we find that the
forms are identical so we can adapt the solution to equation (19), given by equation
(26), for equations (8c) and (8d). The solutions are respectively:

fl F1('0
u l (t) = (t - "0 (M + m) d_, (29a)

and

t F2(_)
u2 (t) = (t - "0 (M + m) d't, (29b)

where I have assumed homogeneous initial conditions. We now have a full set of
equations for the motion of the vibrator as summarized below:

t F1('Q
u 1 (t) = (t - '0 (M + m) d'c , (30a)

t F2('_)
u2 (t) = (t - "0 (M + m) dx, (30b)

and

(t- "c)AF3(x ) e-_[t-_] sin(co1It- "c]) AF3(x ) +f('r) dx, (30c)u3(t) = M + col_1.

where

col = 5/_2- _/2,
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such that

mM
}.t= re+M"

and

F3(t) = F° +AF3(t) .

As can be seen from equations (30a), (30b) and (30c) the displacement of the
vibrator plate is inextricably linked to the forces of the elastic half-space

Ft('O, F2(_),andF3(z). In order to complete the characterization we must have a

description of the deformation and stresses within the elastic half-space due to the
displacements ul(t), u2(t), and u3(t)of the plate. To accomplish this we turn to the

representation theorem (Aki and Richards, 1980) which can be use to relate the
displacement field throughout the elastic half-space due to sources within a given
volume of the half-space as well as on the surface of that volume.

Elastic half space portion of vibrator problem:

Consider a group of N vibrators the i'th element of which has base-plate
displacement characterized by:

uj(t) : i = 1, 2,--., N and j = 1, 2, 3, (31 a)

where the subscript j indicates three orthogonal components. These base-plates are
situated on surface elements:

Si(t):i= 1,2,...,N . (31b)

It is assumed that the three displacements given by equation (31 a) completely describe
the motion of the base-plate and the half-space under the base-plate to which it is in
welded contact. This rather severe restriction can be partially justified in the following
manner.

By assuming the base-plate to be rigid, we have reduced its possible
deformations to just a rotation and a displacement. In two dimensions a rotation and
translation can be written in matrix form as:

= [cos(0) -sin(0)] [x ] + [ux ] (32a)
[X] Lsin(0)cos(0)] Ly] [Uy]

where x and y are the coordinates of a point in the undeformed reference frame while X

and Y are the coordinates of the same point after a rotation by angle 0 and
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displacements in the x and y direction is given by Uxand uy respectively. If 0 is small
compared to unity, then we can use small-angle approximations to rewrite equation
(32a) as:

l][yJ [Uy]

where only the translational/displacement term has survived the approximation. This

restriction, however, is not crucial to our development. The forces F[, F_ and F_ due to
the half-space acting on the ith base-plate results from the stresses set up in the elastic
half-space, either by base-plate self interaction, interaction with the other vibrators,
stresses due to other external or internal sources, or any combination of these. If we
represent the stress field in the elastic half space by _ij, the forces acting on the
individual base-plates can be represented as:

Fj(t)= f_ _jk n_dS (33)i

where nk is the outward normal of the surface S of which Siis a part. The surface S
enclosing volume V together encompasses all sources of the half-space. Figure 2
shows this in two dimensions. The surface S and the volume V can be extended to
cover all of the half-space.

SI S2

I \

\ I
_ n ]
_ /
\ s /
I I

/ Elastic Half Space / "_ ,,.,/

FIG. 2 Source volume in elastic half space
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We will use the elastic representation theorem (Aki and Richards, 1980) to
relate the displacements of the base-plates to the displacements observable throughout
the elastic half-space. Since the only sources are postulated to be due to the
displacements of the base plates the appropriate form of the representation theorem
would be:

u,_(x,t) = ff d'_I um(_,'_) Cmjkl(_)nj Gnk,l(x,t-'_;_,O) dS(_). (34)

where u -= displacementvector,

x -= observation point vector,

_ sourcepointvector,

Gnm(X,t-'t;_,O) -= n'th component of the elastodynamic
Green's function with unit impulse applied

at _ and time "¢,subject to homogeneous
boundary conditions,

GnkJ -_ partial derivative of the Green's function

with respect to source coordinate _1,

V _- volume of integration containing source
mechanisms,

S -= closed orientable surface containing V,

n _- unit outward normal of surface S,

and Cmjkl(_) --= elastic tensor at source location _.

We will be considering only homogeneous isotropic half spaces so the elastic tensor
takes the special form:

Cijkl= _"_,j'_kl + _ [_ik_jl + _)i_jk] " (35)

The final connection between the vibrators and the elastic half-space is made
through the constitutive relation:

crij = c ijkte kt, (36)

where

Ek I = 1 (tlk,l + Ul,k).

Due to the symmetries of the elastic tensor equation (36) can be written in the following
more useful form:
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o ij = cijkluk,l" (37)

Conveniently we have ready made solutions for a point force on the free surface
for both vertical and horizontal directions. The solutions come form the works of Miller
and Pursey (1953) for vertical point forces and Cherry (1962) for horizontal forces.
They were calculating the response of an elastic half space to a vibrating circular disk
where the traction under the plate is assumed to be known. They then proceeded to
derive the asymptotic expansions to their integral representations. As paraphrased from
Cherry (1962), if the amplitude multiplied by the square of the radius of the disk
remains finite as the radius of the disk approaches zero, then we have the response due
to a point force on the free surface. It is just such a response which is needed in
equauon (34) for the Green's function. This completes the definitions needed to solve
the complete set of coupled equations.

Solving the entire problem

So far we have developed a complete set of equations describing the motion of
the vibrators, as given by equations (30a) through (30c); however, these equations are
dependent upon the forces that the half-space exerts on the vibrators. The equation
describing the motion of the half-space is given by equation (34), which in turn
depends on the motion of the vibrators. These two sets of equations are related to each
other by equations (33) and (37). If we start with the following initial conditions:

u 1 =u 2=u 3 =0, (38a)

for displacements, and

F_ =F_=0andF i =F O, (38b)

for forces, we can use the coupled equations to solve for all future displacements within
the half-space. The actual procedure is most easily implemented by numerical
integration and further simplification can be sought by transforming the equations into
the frequency domain. Flowchart of figure 3 shows how the variables are related to
each other and indicates how an algorithm may be implemented.
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Initial conditions

1

ui ~uruz
= F{ = O arid

= 0

Fi-*?

Vibrator sweeps
Calculated qualities

Required for calculation

" ( O

,(O

oy

FIG. 3: Flowchart Coupled equations relationships

CONCLUSION

The equations governing the dynamic evolution of a simple vibrator model
consisting of a hold-down mass a base-plate joined in series by a spring and dashpot
were derived. A set of these vibrators was then allowed to interact upon a free surface
over an elastic half-space. The equations controlling the dynamics of the elastic half-
space were developed. These coupled equations were shown to completely describe the
wavefield generated by a set of these simple vibrators over an elastic half-space. The
next step would be to solve the coupled set of equations numerically.
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