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Relationships among elastic-wave values (Rpp, Rps, Rss,

Vp, Vs,   ρ, σ, κ)

Robert R. Stewart, Qi Zhang, and Felix Guthoff*

ABSTRACT

The average Vp/Vs value of a set of layers is a weighted sum of the interval velocity
ratios. The average value is also bounded by the maximum and minimum interval
values. The average value will change according to changes in the target layer. The
thicker the layer, the greater its influence on the average value.

The approximate equations for converted-wave reflectivity Rps and pure-shear
reflectivity Rss can be combined to give a simple relationship between the two:

  R ps~ 4sin(θ)Rss
, where  θ  is the reflection angle of the shear wave.

The normalized elastic parameters   
(∆α

α ,
∆β
β ,

∆ρ
ρ ) are estimated from summed P-P

and P-S reflection coefficients using a linear inversion method.  Normalized Poisson’s

ratio   (∆σ
σ ) and Lamé parameters   (∆λ

λ , ∆κ
κ ) can then be computed from the estimated

velocity and density changes.

AVERAGE Vp/Vs  VALUE OF MULTIPLE LAYERS

Often in seismic analysis we extract a low-resolution or macroscopic parameter,
such as average velocity, which is dependent on higher resolution values such as
interval velocities.  We may thus be interested in understanding how the micro-values
effect the macro-parameters.  In this case, how do interval P- and S- velocity ratios
affect the average velocity ratio.  This is interesting for several reasons.  One is when
picking events and isochrons on P and S sections, we often take several cycles between
picked events (Miller et al., 1995). This means that a series of layers are entering into
the isochrons, isochron ratios and thus overal Vp/Vs calculation.  The question is how
does the overall or average Vp/Vs value relate to the interval Vp/Vs values?

Average Vp/Vs  calculation

Suppose that we have a layered medium (with layers i=1, N) having P-wave and S-

wave interval velocities (α i,βi).  Each layer has thickness zi and a set of transit times:
 ti

p  for one-way P waves and  ti
s  for one-way S waves (Figure 1).

What is the average velocity ratio for the whole section?  Let’s first define an average
Vp/Vs value as trhe ratio of average velocities (after Sheriff, 1984):.
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   γ ≡
Z Tp
Z Tp
Z Ts
Z Ts  

, (1)

where Z is the total depth travelled, Tp is the one-way P-wave travel time to depth Z,
and Ts is the one-way S traveltime from Z to the surface, and then

   γ = Ts Tp
Ts Tp

 
. (2)

But  ti
s  =   γiti

p , and

 

  

γ =
ti

sΣ
i = 1

N

Tp
=

γ it i
pΣ

i = 1

N

Tp
(3)

  
γ = γ ir iΣ

i = 1

N

(4)

where 
 ri =ti

p
TpTp   or the fractional transit time.
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Fig. 1. Plane-layer elastic medium with N layers.

Thus, the average Vp/Vs value is the transit-time weighted sum of the interval
velocity ratios.  Furthermore, γ  will be bounded by the minimum and maximum

interval ratios (  γi ) as shown below:
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γ = γ iri ≥ min(γ i )ri = min(γ i ) ri = min(γ i )
i=1

N

∑
i=1

N

∑
i=1

N

∑ (5)

γ = γ iri ≤ max(γ i )ri = max(γ i ) ri = max(γ i )
i=1

N

∑
i=1

N

∑
i=1

N

∑ (6)

Thus, min    (γi)  ≤ γ ≤ max    (γi)  .

Examples

We can take several examples to show the effect of a variable velocity layer on
the average Vp/Vs value.  The medium’s velocities are given in Table 1, and Figure 2
shows the results.  We see that for an isochron ratio or average Vp/Vs determination
across a thick stack of layers, say 130 m, with only a 10 m target interval, there is little
impact of that layer.  On the other hand, a 100 m target layer has a large influence on
the final Vp/Vs value.

Table 1.  Five layer elastic model to compute the average Vp/Vs value.

Layer Thickness (m) Vp  (m/s) Vs  (m/s) Vp/Vs
1 30 2300  1100 1.77

2 30 3000 1800 1.67

3 10 - 100 3500 1000 - 3000 1.20 - 3.50

4 30 4500 2500 1.80

5 30 3750 2200 1.70

Two more examples, directly related to current field cases are shown.  We observe
the effects of altering the reservoir thicknesses and Vp/Vs values for the Lousana Nisku
case and Blackfoot sand channel example.

Table 2.  Average Vp/Vs values for Lousana Nisku case

Layer Thickness (m) Vp  (m/s) Vs  (m/s) Vp/Vs
Wabamun salt 25 4600  2300 2.00

Calmar shale 10 4300 2050 2.10

Nisku anhydrite 15 6100 3050 2.00

Nisku porous dolomite 5 - 40 4700 - 7000 3050 - 3950 1.55 - 1.77

Nisku tight dolomite 10 7000 3950 1.77

A thick porous dolomite influences the average Vp/Vs  value significantly (Figure
3). A thin porous region will have an effect that is probably lost in the noise of real
data.
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Table 3.  Average Vp/Vs values for Blackfoot sand channel

Layer Thickness (m) Vp  (m/s) Vs  (m/s) Vp/Vs
Mannville 20 4200  2330 1.80

Glauconitic channel 5 - 45 3700 - 4500 2300 - 2500 1.60 - 1.80

Basal quartz 10 4500 2500 1.80

Results from the model of Table 3 are shown in Figure 4.  If we assume that we can
pick real variations in Vp/Vs down to about 0.05, then a Glauconitic sand with
thickness above about 10 m should produce an anomalous Vp/Vs  value.

3.53.33.12.92.72.52.32.11.91.71.51.31.3
1.45

1.55

1.65

1.75

1.85

1.95

2.05

2.15

2.25

2.35

2.45

2.55

A
ve

ra
g

e 
V

p
/V

s

Vp / Vs of third layer

z3=10

z3=30

z3=50

z3=70

z3=100

FIG. 2. Variation of the average Vp/Vs value over the 5 layer model (Table 1) with changes in
the third layer Vp/Vs value.
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FIG. 3.  Variation of the average Vp/Vs value from the Lousana Nisku model (Table 2).
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FIG. 4  Variation of the average Vp/Vs value across  the Blackfoot sand channel model (Table
3).
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AN APPROXIMATE RELATIONSHIP BETWEEN Rps AND Rss

We may have a converted-wave reflectivity section or a pure shear section,
depending on what survey was conducted.  Because both surveys relate to shear-wave
properties it is natural to ask several questons:  Which is better?  Cheaper?  How do
they relate to each other?  The first question is the subject of much current interest and
study.  More on it soon.  The second question has an answer and it generally will be
the P-S survey, as it is basically a standard P-P survey with just a different geophone.
What the relationship is between Rps and Rss can be shown as below.  The equations
from Aki and Richards (1980) that approximate the converted-wave reflectivity Rps and
pure-S reflectivity Rss are given as:

 

  
R ps θ =

– pα
2cos θ [(1 – 2β2p2 + 2β2 cos ψ

α
cos θ

β )
∆ρ
ρ

– (4β2p2 – 4β2 cos ψ
α

cos θ
β )

∆β
β ]

, (7)

and   
Rss θ = – 1

2 (1 – 4β2p2)
∆ρ
ρ – ( 1

2cos2 θ – 4β2p2)
∆β
β

(8)

Suppose that  ψ , and thus  θ  and p are small then

 
  

Rss~ – 1
2 (

∆ρ
ρ +

∆β
β ) (9)

  
Rps~ –

pα
2 [(1 + 2

β
α )

∆ρ
ρ + 4

β
α

∆β
β ]

  
= –

pα
2 [

4β
α

∆ρ
ρ +

4β
α

4β
α + (1 –

2β
α )

∆ρ
ρ ]

  
= –

pα
2 [ – 8Rss β

α + (1 –
2β
α )

∆ρ
ρ ]

Now as  β
α  ˜  1

2 , the second term in the equation is very small.  Thus

 
  R ps θ ~ 4sin θ Rss θ (10)

So the converted-wave reflectivity is approximately related to the pure-S reflectivity.
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COUPLED P-P AND P-S INVERSION

Suppose that we are trying to estimate  ∆α
α  and  ∆β

β  from the Aki and Richards

(1980) equations. We could first expand the equations in powers of the ray parameter
p:

  
R pp ~ Ro

pp – p2(2β2 ∆ρ
ρ – α2

4
∆α
α + 4β2 ∆β

β ) (11)

where    Ro
pp = 1

2(
∆ρ
ρ +∆α

α )  ,

and   
R ps ~

–pα
2 (1+

p2

2 β2) [(1 +
2β
α )

∆ρ
ρ +

4β
α

∆β
β ]. (12)

Then   Rpp +Rps = Co +C1p + C2p2+ C3p3 + . . . . . , (13)

where   Co =Ro
pp  ,

   C1 = –α
2 [(1 +

2β
α )

∆ρ
ρ +

4β
α

∆β
β ]  ,

   C2 = –(2β2 ∆ρ
ρ – α2

4
∆α
α + 4β2 ∆β

β )  ,

   
C3 = –

αβ2

4 [(1 +
2β
α )

∆ρ
ρ +

4β
α

∆β
β ]  .

This could be analysed now by a polynomial line fit up to the third power of the
variation of Rpp + Rps with offset (p).  Once we have estimates of C0,...C3, then we
can pose the problem as a matrix inverse.  Note that C3 is directly related to C1 and will
not constrain the problem.  So:

   

C0

C1

C2

=

1
2

1
2 0

A 0 B

C D E

∆ρ
ρ

∆α
α

∆β
β

(14)

  C = GP (15)

where A, B, C, D, E are functions of   α,β,ρ.

We could estimate the scaled elastic changes by using a damped   (with ε2) least-
square solution, for example:
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   P = (GTG) GTG + ε2
– 1

GTC (16)

Once we have the normalized density and velocity changes from equation (16), we
may be interested in finding other elastic parameter changes such as Poisson’s ratio and
the Lamé parameters.

POISSON’S RATIO AND LAMÉ PARAMETER VARIATION

Poisson’s ratio σ can be written as a function of the P- and S-wave velocities as:

  
σ= α2−2β2

2(α2−β2)
=

γ2 – 2
2(γ2 –1)

(17)

where
 

  γ = α
β

How do variations in α and β effect σ?  Suppose that changes in the velocities ∆α
and ∆β are small then:

∆σ = ∂σ
∂α

∆α + ∂σ
∂β

∆β
 

(18)

Using equations (17) and (18), the relative variation of  σ is:

∆σ
σ

= 2α 2β 2

(α 2 − β 2 )(α 2 − 2β 2 )
(
∆α
α

− ∆β
β

)
 

.
(19)

We note that if   α = cβ, where c is a constant, then 
  ∆α

α =
∆β
β  and changes in  α and

 β produce no change in Poisson’s ratio ( γ is constant).  If, however   α = cβ + d,
where c and d are constants, then:

   ∆α
α –

∆β
β =∆α

α
– d
cβ (20)

and 
 ∆σ
σ  changes accordingly.

We recall that 
  α2 = (λ +2µ) / ρ , (21)

and   β2 = µ / ρ, (22)

where  µ  and  λ are the Lamé parameters.

Now, it may be useful to isolate  λ  for petrophysical analysis as  λ  may depend
more directly on pore fill.
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  λ = ρα2 – 2ρβ2 (23)

Expanding equation (23) for small velocity and density changes gives

  ∆λ
λ = ( 2

α2 – β2 )[α2(∆α
α ) – 2β2(

∆β
β )] +

∆ρ
ρ (24)

Again, a  ∆λ
λ  section might have less influence of lithology and highlight pore-fill

changes.

For completeness, we can also estimate the incompressibility (bulk modulus)
changes:

  κ =λ + 2
3µ = ρα2 – 4

3ρβ2

 
, (25)

and   ∆κ
κ = ( 2

α2 – β2 )[α2(∆α
α –4

3β2(
∆β
β )] +

∆ρ
ρ (26)

CONCLUSIONS

The average Vp/Vs value is a weighted sum of the interval velocity ratios. The
average value is also bounded by the maximum and minimum interval values. It will
change according to changes in the target layer. The thicker the layer, the greater its
influence on the average value.

The shear reflectivities (Rps and Rss) are approximately related by a simple sine
function.  It should be possible to construct one section given the other.

A method is presented to calculate normalized velocity and density changes from P-P
and P-S reflectivity coefficients.  Using these changes we can also calculate changes in
Poisson’s ratio, incompressibility, and the Lamé parameters.
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