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ABSTRACT

The present paper introduces a t-p transform algorithm for 3D seismic data which

not require any geometrical symmetry on the wavefield contained in the seismic data.

It only requires to have the data regularly spaced. This algorithm express the t-p

transform by a four-fold sequence of 1D Fourier transforms in time, and spatial

coordinates as indicated by McCowan and Brysk (1989) for a point source in an

arbitrary medium.

In other words, the 3D t-p transform is considered as an integration process of

different two-dimensional t-p transforms, each one representing a particular picture of

the propagating wave field, along inline and crossline directions. The two-dimensional

t-p transform (back and forward) is performed in the k-w domain using the algorithm

published by Wade and Gardner (1988) and Gardner and Lu (1991) based on the

�Fourier slice theorem� or �projection slice theorem� (Kak and Rosenfeld, 1982).

The 3D t-p transform algorithm is tested on synthetic data simulating a shot

acquired on an horizontally layered earth model. The results are shown for P  and

converted data using two different S/N ratios (free-noise and 15% of random noise)

showing the robustness of the algorithm for recovering the original shot gathers in the

presence of noise.

INTRODUCTION

The t-p transform is an attempt to preserve the wavefield characteristics of the

seismic data. A seismic section in the t-p domain offers an alternative view in which all

subsurface reflectors are illuminated by incident energy of a fixed ray parameter. One

advantage of working in the t-p domain is that we can study the different wave modes

as function of their corresponding slowness values (p=1/v), where v is the propagation

velocity. Then, the t-p transform is an useful processing tool because it provides an

increased separation between different seismic waves (i.e., multiples, ground-roll, P

and S waves among others).

Given that there is minimal deterioration of the seismic data due to transform

artifacts, a simplified interpretation of field records and better noise suppression can be

obtained in the t-p transform. This transformation has been world-wide used and well

researched for two-dimensional seismic data recording during decades. For 3D data

there are some mathematical developments and several approaches taking advantage

of particular symmetries in the data (Evans, 1991).
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THEORY

The application of slant stacking to decompose plane wavefields into their

component waves is well documented (Chapman, 1978; Stoffa et al., 1981; Diebold

and Stoffa, 1981 among others). Commonly, the slant stack is defined as:

Ψ ( , ) ( , )p u px x dxτ τ= +∫
−∞

∞
(1)

where u(t,x) are the data at time, t, and horizontal range, x. In seismic field, u(t,x)

represents any two dimensional seismic data recorded as a function of traveltime, t,

and source-receivers offset, x, as result of a point-source excitation. The variable

t=t+px represents a line in the x-t plane with slope p (or slowness, 1/v) and vertical

intercept time t (Fig. 1). Conceptually, the slant stack represents a process that maps

the summed amplitudes along a given line with slope p and intercept time t  in the x-t

domain into a point in the t-p domain (Fig. 1).
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Fig. 1. The slant stack Y(p, t) at any point (p, t)  is obtained by adding u(x, t) along the line

t= t+px. The value of the Y at the points where the line intersects each trace of u is obtained

by interpolation (After Wade and Gardner, 1988).

In this way, summing amplitudes, of a given event, along lines with different p and

t values we can represent this event as an ellipse in the t-p domain (Fig. 2).

The generalization of the slant stack to the 3D case is straightforward if we

consider  now that the slowness vector 
r

p  has two components ( p p
x y

, ). Then, the 3D

t-p transform can be expressed for a point source acting at the origin of a uniform

medium as follows:

Ψ ( , , ) ( , , )τ τp p dx u p x p y x y dy
x y x y

= +∫∫ +
−∞

∞

−∞

∞
(2)

where u(t, x, y) represent the seismic data distributed over an areal coverage at time, t,

without assuming any geometric symmetry (McCowan and Brysk, 1989; Chapman,

1981).
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Fig. 2. A hyperbola on a shot gather maps onto an ellipse on the p-gather (After Yilmaz,

1987).

The reciprocal slat-stack operation for reconstructing (x, t) data from (p, t) data is

given by:

u t x y z
d

dt

dp t p x p y qz p p dp
x x y x y y

( , , , ) ( , , )= − ∫ − − −∫
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π

Ψ (3)

A more convenient way to express the 3D t-p transform and its reciprocal s using

direct and inverse Fourier transforms. In fact, the slant stack is reduced to a sequence

of 1D Fourier transforms as follows:

Ψ ( , , ) ( , , )τ
π
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x y

iw
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where w (=2pf) is the angular frequency. In the same way, the reciprocal operation is

achieved by Fourier transforming back four times (McCowan and Brysk, 1989). The

only consideration is that the transform variable for x is wp
x
 and y  it is wp

y
, so that

an additional factor of w
2

 appears during the operation u(t, x, y) thus has the form:
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In other words, the slant stack can be performed either directly as a double integral

over time-shifted traces (eq. (2)), or by a four-fold sequence of Fourier transforms (eq.

(4)); so can its reciprocal, except for the differentiation (with reference to eq. (3) and

(5)).
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Then, for obtaining the t-p transform we use the following procedure: i.) first, we

convert the 3D input data from x-t domain to x-w domain (space-frequency domain)

by direct Fourier transform, ii.) second, we pick out the volume along crossline

direction and apply to each inline data a Fourier transform from x to wp
x

, iii.) third,

the last procedure is again apply on the data picked out from the (w, wp
x
, y) volume

along the inline direction performing a Fourier transform from y to wp
y
, and iv.)

fourth, we convert the resulting (w, wp
x
, wp

y
) volume using the inverse Fourier

transform. All this sequence is performed shot by shot for all the inline and cross-line

lines of each shot. Physically, with the inner three integrations in the last line of eq. (4),

we expanded the propagating plane wave registered at the surface into component

monofrequency plane waves and picked out the particular plane wave with a frequency

w and a wavenumber with x and y components wp
x
 and wp

y
. With the last integration

in the same equation, we superpose a collection of such plane waves to build up a new

wavelet following the criteria: They all have the same components of the Snell�s

parameter p
x
 and p

y
; in other words, they all have the same direction of incidence

into the medium, but different frequencies and wavenumbers. Hence, the slant stack

represents a wavelet entering the medium with a specific orientation (McCowan and

Brysk, 1989).

The inverse operation for recovering the original (t, x, y) volume is performed

reversing the above sequence.

3D TAU-P TRANSFORM ALGORITHM

The process for obtaining the 3D t-p transform as a sequence of Fourier transforms

was implemented by modifying the forward and inverse 2D t-p algorithms published

by Gardner and Lu (1991). Both algorithms work in the k-w domain taking advantage

of the �projection slice theorem� (Wade and Gardner, 1988). This theorem says that

the 1D temporal coefficients of Y(t, p) are identical to the coefficients in the 2D

Fourier transform of u(t, x) picked out long the radial line k=-pw, where k is the

frequency corresponding to x and w, the frequency corresponding to t. The forward

slant stack process is indicated in the Fig. 3a. Basically, it is used the fact that any

radial line in the k-w domain is a column in the p-w domain. Conversely, any column in

the k-w domain is a hyperbola in the p-w domain (Wade and Gardner, 1988). This last

property let us reconstruct the (k, w) data from the (p, w) data by simply picking out

values for k constant (along a hyperbola) as illustrated in Fig. 3b.

The extension for 3D data of these algorithms is indicated graphically in the Fig. 4.

First, a (w, p
x
, y) volume is obtained after applying the forward 2D t-p transform in

the k-w domain along the crossline direction. Second, the forward 2D t-p transform is

again applied along the inline direction(value of p
y
 constant) for obtaining the final
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(w, p
x
, p

y
) volume. An inverse Fourier transform is applied on the resultant volume

for reconstructing the original (t,x, y) data. For obtaining a 1:1 mapping, i.e., each

coefficient for Y comes from a unique coefficient for u, it was applied a high-cut

frequency filtering process for muting the (p, w) data outside the interval (2p/wdx) for

each frequency. The resulting (p, t) slant stack contains enough information to recover

the original u(t, x, y) without aliasing.

SYNTHETIC MODELLING

For testing the 3D t-p transform algorithm we generate a horizontally layered earth

model with three flat homogeneous layers. Fig. 5 shows the depth model and the P

wave velocities of each layer. This model was generated with the SIERRA modelling

package. A single 3D a shot record was acquired on this synthetic model consist of 60

receivers distributed along six inline lines in the North-South direction and ten cross-

line lines oriented East-West. The source was located at the left inferior corner of this

patch (Fig. 6). The distance between inline and crossline lines was kept fixed at 75 m,

respectively.

Four different experiments were performed for evaluating the algorithm in

reconstructing the original wavefield under free-noise and noisy conditions. These

experiments are described as follows.

Experiment 1

It represents a synthetic 3D P-P shot record of the three flat horizons of the depth

model (Fig. 7a). The reconstructed shot record is indicated in the figure 7b for 50

values of slowness, p (50 for p
x
 and 50 for p

y
). It represents a p increment of

0.0000134 s/m with a range of p values between 0 - 0.00067 s/m equivalent to a

minimum P wave velocity of 1500 m/s for both inline and crossline directions. It is

obvious the good performance of the algorithm during the reconstruction of the input

shot. Some noise is left on the record after applying the algorithm. Fig. 7c shows the

result of the reconstruction increasing the total number of p values by a factor of 2.

The remnant noise was practically eliminated. It indicates that a more fine sampling in

the slowness p let us obtain a better wavefield reconstruction. The correspondent

representation of the original shot record in the t-p transform is indicated in the Fig.

7d. The short spread used in the acquisition produces linear noise interfering with the

ellipses associated to the events. In fact, as indicated by Phinney et al. (1981) slant

stacks of lines for finite-length discrete data do not transform exactly into points

regardless of the method used for obtaining the direct and inverse t-p transform.

Experiment 2

In this case it was added a 15 percent of random noise on the 3D P-P shot record

(Fig. 8a). We can see the reflections associated with the first and second flat reflectors

but the reflection from the last one is masked by the noise background. The
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reconstructed shot record (Fig. 8b), using the same spacing between p traces in the t-p

domain shown in experiment 1, shows an excellent recovering of the three events in

presence of noise. Although, the amplitudes of the events are diminished after the

reconstruction is possible to identify the two upper P wave events. The last event

associated with the deepest layer have been recovered too but it is partially masked by

the noise.

Experiment 3

The goal of this experiment is evaluate the reconstruction of a shot record

containing converted waves (Fig. 9a). The reconstructed record is indicated in the

figure 9b. gain, the reconstruction of the P-P and P-SV waves is very good but noisy.

Here, the reflections associated with the converted waves appear with less amplitude

due to superposition of the P and SV energies in the t-p domain as consequence of the

finite-length or short offset of the spread in the x-t domain. As the energy associated

with the P-wave is stronger than the SV-wave energy; it masks partially the SV events

specially those arriving at longer traveltime.

Experiment 4

The effect of the random noise on the reconstruction of the 3C converted wave

records is considered (Fig. 10a) where the noise level is kept at 15 percent as

experiment 2. The result is shown in the Fig. 10b. It is obvious that 3D t-p transform

fails to recover the SV wave events due to its energy is less than the noise present in

the data. The reconstruction of the SV waves is effected by the P-P and P-SV

interference and the low S/N ratio. The P-wave energy is more coherent in the t-p

domain and it permits a better performance of the algorithm.

CONCLUSIONS

1) It has been presented a 3D t-p transform which not requires to assume any

geometric symmetry in the wavefield contained in the seismic data.

2) This 3D t-p transform (forward and inverse)works in the k-w domain by

expressing the slant stack process as a four-fold sequence of Fourier transforms which

convert the (t, x, y) data to (w, wp
x
, wp

y
) data. This is a trade-off for the expense

disk space required for performing the necessary Fourier transforms, but these are

typically very fast and eliminate the problem of double summation of the seismic

amplitudes along ( p
x
, p

y
) planes as would be assumed for an implementation of

Stoffa�s method for 3D data.

3.) The preliminary results of the application of the 3D t-p transform on synthetic

3D shot records, containing P and converted waves with different S/N ratios (free-

noise and 15% random noise), show its robustness for recovering the initial wavefield
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in real field conditions. Any ulterior noise-elimination algorithm during processing will

increase the reconstruction capacity of the 3D t-p transform algorithm.
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Fig. 3a. Scheme for constructing slant stack with 2D Fourier transforms (After Wade and

Gardner, 1988).
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Fig. 3b. Scheme for reconstructing (t,x) data from (t, p) data with 2D Fourier transforms

(After Wade and Gardner, 1988).
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Fig. 4. Schematic view of 3D t-p transform applied on data distributed over an areal

coverage without assuming any geometric symmetry.
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Fig. 5. Depth model representing a horizontally layered earth with constant P and S wave

velocities.

Fig. 6. Acquisition geometry for a 3D shot record. The inlines are oriented along the North-

South direction and the crosslines along the East-West direction. The source is represented

by the simbol (*) and the receivers by (ÿ) on this display.
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Fig. 7. (a) The input 3D shot record showing the P-P arrivals.

Fig. 7. (b) Reconstruction after applying the 3D t-p transform considering 50 slowness values

in each x and y direction.
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Fig. 7c. The reconstructed 3D shot record after applying the 3D t-p transform considering

100 slowness values in each x and y direction.

Fig. 7d. The representation of the 3D shot record for the inline number 1 in the t-p domain.
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Fig. 8a. The input 3D shot record showing the P-P arrivals, with 15% of background noise,

for the three flat layers in the depth model shown in Fig. 5.

Fig. 8b. The reconstructed 3D shot record, shown in Fig. 8a, after applying the 3D t-p

transform in the presence of noise.
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Fig. 9a. The input 3D shot record showing the P-P and P-SV arrivals (free-noise condition).

Fig. 9b. The reconstructed 3D shot record  after applying the 3D t-p transform.
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Fig.10. (a) 3D shot for converted waves (top), (b) Reconstructed data (bottom).


