
Approximate parameters of anisotropy

CREWES Research Report – Volume 7 (1995) 16-1

Approximate parameters of anisotropy from  reflection
traveltime curves

Siriporn  Chaisri and R. James Brown

ABSTRACT

For elastic-wave propagation in a transversely isotropic medium, there are five
elastic parameters, which may be expressed as the two vertical velocities and the
Thomsen parameters (ε, δ, and γ). In this research, the discrete least-squares
approximation will be used to fit the three coefficients (A2, A4 and A*) of the non-
hyperbolic P- and SV-wave traveltime curves. The coefficient A2 determines the
short-spread moveout velocity, A4 gives the correction for nonhyperbolic moveout (in
the case of strong anisotropy) and A* is a parameter for correcting the behavior of
moveout at large offset, which depends on A2, A4 and the horizontal velocity. For P-
wave propagation, the coefficient A2 depends on vertical velocity (VPo) and Thomsen
parameter δ, while the coefficient A4  is controlled by VPo, δ and ε. For SV-wave
propagation, the coefficients A2 and A4 depend on the vertical velocity ratio VPo/VSo, δ
and ε. And for SH-wave propagation, the coefficient A2 depends on the Thomsen
parameter γ and the vertical velocity (VSHo). In a homogeneous transversely isotropic
medium, the wavefront of the SH wave is always elliptical, and the SH-moveout is
hyperbolic, so that the coefficient A4 for the SH wave vanishes. The three coefficients
depend on the vertical velocities and Thomsen parameters (ε, δ, and γ). Therefore, by
combining these coefficients, we will be able to recover the Thomsen parameters and
the vertical velocities.

INTRODUCTION

It is well known that, in the presence of anisotropy, the traveltimes of waves
reflected from a horizontal interface form a nonhyperbolic curve. That is, the short-
spread moveout velocity is not equal to the vertical velocity, as in an isotropic
medium. In conventional techniques, we ignore the difference between vertical rms
velocities and moveout velocities. This may lead to unsatisfactory errors in interval
velocities and in time-to-depth conversion. In the conventional case, the reflection
moveout curves are approximated by the hyperbolic equation:
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where tv is the zero-offset arrival time, x is the source-receiver offset, and Vmo is the
(short-spread) moveout velocity. In the presence of anisotropy, the reflection moveout
curves are approximated by Tsvankin and Thomsen (1994) as:
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The coefficient A2 is also identified as 1/(Vmo)
2. In isotropic media, we assume that

moveout velocities are identical to vertical velocities (in a single layer) but in
anisotropic media, the moveout velocities depend on vertical velocities and the
Thomsen parameters (ε, δ, and γ). If we know the three coefficients in equation (2),
we will be able to calculate these parameters and the vertical velocities for each
propagation mode (qP, qSV and SH waves).

THEORY

The least-squares approximation

To calculate the three coefficients  in equation (2), we first try to linearize it by
letting  y = t2 and u = x2  and multiplying through by the denominator of the last term.
Then equation (2) becomes:

y C C u C u C u yo= + + +1 2
2

3 (4)

where

C tvo = 2 ,     C A t Av1
2

2= +* ,    C A A A2 2 4= +* ,    and  C3  =  -A* .

Assume that ~yi  are the regression estimates for the arguments ui, that is:

~ ~ ,y C C u C u C u yi o i i i i= + + +1 2
2
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and regard yi and ui as observed values, corresponding to ti and xi, i = 1,...,N; N being
the number of traces picked. The sum of the squares of differences between  estimated
and observed values is



Approximate parameters of anisotropy

CREWES Research Report – Volume 7 (1995) 16-3

( )E y yi i
i

= −∑ ~ 2

( )E C C u C u C u y yo i i i i i
i

= + + + −∑ 1 2
2

3

2~ . (6)

E can be seen as a function of the variables, Co, C1, C2 and C3. To minimize it, the
necessary requirement are:
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equation (7) can be written into the four regression equations as:
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where N is the number of observed values.

The  equations (8) to (11)  are  a  linear  system  of  variables  Co,  C1,  C2  and C3, and
these could be solved very easily if we let ~y yi i→ . Then from equation (4), we could
get the three coefficients and the two-way vertical traveltime as functions of Co, C1,
C2 and C3, i.e.:

t Cv o
2 =  ,    A C* = − 3 ,   A C C Co2 1 3= +  ,  and  ( )A C C C C Co4 2 3 1 3= + +  . (12)

The iteration method

We need to iterate the procedure because of the nonlinear nature of the traveltime
equation (2) which leads to the appearance of ~yi  in the regression equations (8) to
(11). In the first iteration, we use the observed values, yi, for the estimated or
calculated values, ~yi , as input to the least-squares approximation [equations (4) to
(12)]. The output of the least-squares approximation are coefficients, used to calculate
the new values of ~yi . These values are used as input for a second iteration, and so on.
The procedure will iterate until the sum of the squares of differences between
estimating and observed values, E, converges to a stable limit.
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WORK PLAN

Data acquisition

The physical modelling of the Phenolic CE slab (Cheadle et al., 1991;Brown et al.,
1991) will be used to test the algorithm. Since we have determined estimates of the
Thomsen parameters of the Phenolic CE slab, we can estimate the velocities of this
material as a function of angle of incidence. From these calculated velocity values, we
can calculate traveltimes, which will be used to test the accuracy of the least-squares
approximation. After that, the same approximation will be applied to the shot gathers
recorded from the Phenolic CE slab.

Data processing

To apply the least-squares approximation, a Fortran program will be written to
estimate the coefficients and then several calculations will be needed to solve for the
anisotropy parameters. More generally, the approximation incorporating dipping
events and azimuthally anisotropic media will be considered for the next step. We are
also interested in the P-SV case, in which the traveltime equation is much more
complicated than the P-P or S-S cases, as is the moveout velocity function.
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