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ABSTRACT

The method of prestack migration by equivalent offset (EOM) forms common scatter
point (CSP) gathers for each migrated trace and then images those gathers with a
migration algorithm. The major benefits are that the CSP gathers are formed by trace
mappings at constant time and that trace binning can be conveniently done as the
gathers are formed. Furthermore, the CSP gathers are very sensitive velocity analysis
instruments. To provide a foundation in scalar wave theory, the Fourier dual algorithm
to EOM, called equivalent wavenumber migration or EWM, is derived from Fourier
migration theory. Both EWM and EOM are based on the algebraic combination of a
double square root equation into a single square root. This result defines equivalent
wavenumber or offset. EWM is found to be an exact reformulation of prestack f-k
migration. The CSP gathers are shown to be formed by a Fourier mapping, at constant
frequency, of the unmigrated spectrum followed by an inverse Fourier transform. The
imaging expression (for each CSP gather) which results from this analysis is formally
identical to post stack migration with the result retained only at zero equivalent offset.
Through a numerical simulation, the impulse responses of EOM and EWM are shown
to be kinematically identical. Amplitude scale factors, which are exact in the constant
velocity EWM theory, are implemented approximately in variable velocity EOM.

INTRODUCTION

The modern theory of seismic wavefield imaging (migration) is generally
acknowledged to rest on theoretical developments from the late 1970's and early 1980's
such as Stolt (1978) Schneider (1978) and Gazdag (1978). Conventional seismic data
processing is usually separated into prestack and poststack processes where "stack"
refers to the common midpoint (CMP) stacking technique. Though seismic data is
manifestly a wavefield, wavefield imaging techniques are usually confined to the
poststack realm for economic and other practical reasons in spite of the general
recognition that prestack migration is theoretically preferable. This has lead to the
development of DMO (dip moveout) theory which enhances the conventional image by
improving the input to poststack migration. Hale (1983) put DMO theory on a firm
theoretical basis by deriving its relationship to the prestack migration theory formulated
in Stolt (1978). Hale proved that, for constant velocity, prestack migration is fully
achieved by the cascade of three imaging steps: NMO removal, DMO correction,
(stack) and poststack migration. Extension of the DMO theory to non-constant velocity
has proven possible for v(z) (Hale and Artley, 1993) but problematic for v(x,z). Thus,
the theory is well formulated as a "time migration" method and has been of great
practical benefit to seismic exploration.

Bancroft and Geiger (1994) and Bancroft et al. (1995) introduced an alternative
technique initially called common scatterpoint (CSP) migration and now called
equivalent offset migration (EOM). In a companion paper (Bancroft et al. 1996), we
detail the time domain implementation and illustrate the method with real data examples.
The essence of the EOM technique is to bypass CMP stacking completely by forming a
new kind of gather which assumes a common subsurface scatterpoint rather than a
common source-receiver midpoint. In a 2-D medium with constant velocity, v, the
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expression for traveltime, t, from source to receiver via a scatterpoint at depth z and
x=0 (figure 1) is called the double square root (DSR) equation and is written in terms of
midpoint, x, and half-offset, h, as:

 vt = z2 + x+h
2

+ z2 + x–h
2

= 2 z2 +he

2 (1)

This equation also defines "equivalent offset", he, by asserting that the DSR can be
written as a single square root. In appendix A it is shown that he is given exactly by:

 
he

2 = x2 + h2 –
4x2h2

v2t2 (2)

x

z

2h

Source Receiver
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Fig. 1. The raypath geometry from source to scatterpoint and back to receiver is shown.
Source and receiver are located by their midpoint, x, and half-offset, h, coordinates while the
scatterpoint is at x = 0 and depth z. The traveltime of scattered acoustic energy from source to
receiver at constant velocity is given by equation (1).

It is well known that the traveltime surface described by (1) is not a hyperboloid in
(x,h) but instead has a quasi-rectangular cross section (figure 2) and is commonly
called Cheop's pyramid (Claerbout 1985). The contours in figures 2-A and 2-B were
computed as constant time contours but, as equation (1) shows, they may also be
considered as constant he contours. Using equation (2), a coordinate transformation
can be defined from (x, h, t) to (x, he, t) which maps Cheop's pyramid into a surface
with hyperbolic cross section (figures 2-C and 2-D). The triangular shape of 2-D
results from requiring that h(x,he), defined by solving (2) for h (see equation A-10), be
a real function. Figure 2-D can then be collapsed to a hyperbola by summing all
contributions at constant equivalent offset (or time). This process is repeated for all
output locations to form a CSP gather at each location.
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Fig. 2. A: Perspective view of Cheops pyramid (eqn 1) for a point scatterer at z=1000m with
v=2000m/sec. B: Plan view of the Cheops pyramid in A. C: Perspective view of Cheops
pyramid after mapping to (x,he,t) space. D: Plan view of Cheops pyramid after mapping to
(x,he,t) space. Contours are constant time. The boundaries of the triangular regions (in C and
D) are defined by abs(x) = abs(he).

The impulse response of constant velocity prestack migration is an ellipse in the
constant offset plane of the impulse with foci at x+h and x-h. Figure 3 shows the
families of ellipses generated in two different constant offset planes through the
Cheop's pyramid of figure 2-A. The bold diffraction curves in each panel are constant
offset (h) slices through Cheop's pyramid. In the zero offset case, the ellipse
degenerates into a circle of radius t which replaces each point of the diffraction curve.
For non-zero offset, the ellipse is shifted up by an amount equal to the NMO time shift.
As is apparent in figure 3, this process focuses all offsets to the location of the
scatterer.
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Fig. 3. An illustration of how prestack migration collapses Cheops pyramid (figure 2) to a single
point. In each panel, the single bold curve is a diffraction curve (formed by slicing, at constant
half-offset, through Cheops pyramid) while the family of lighter curves are ellipses of constant
traveltime. Half-offsets are 0 m (A), and 1500 m (B). The diffraction curves are migrated by
replacing each point by a time shifted ellipse. The family of ellipses focus at the scatterpoint
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location regardless of offset. The time shift of the ellipses is given by the NMO for a particular
offset.

EOM achieves exactly the same impulse response through the numerical mechanism
shown in figure 4. An impulse at (xo,ho,to) is first mapped to a hyperbola (A) in the t
= to plane of (x,he,t) space. This hyperbola is he(x) defined by setting h and t to
constants in (2) and is the contribution of the impulse to the family of CSP gathers.
Then each point on the hyperbola is replaced by a wavefront circle he(t) (B) defined by
(1). The family of wavefront circles forms the correct prestack migration ellipse (C)
where they intersect the zero offset plane. (As is well known, the mechanism of point
replacement by wavefront circles is equivalent to summation along constant traveltime
hyperbolae.) Though this mechanism might seem complex at first, it leads to great
computational savings because the formation of CSP gathers allows a convenient
binning (in he) and the gathers are formed by trace mappings at constant time.
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Fig. 4. The impulse response of equivalent offset migration. The input data was a single spike
at inline coordinate 0, offset 500, and time 2.0. The spike is spread along the hyperbola (A) in
the t=2.0 plane in the process of forming CSP gathers. The migration of each CSP gather
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replaces the points on the hyperbola with wavefront circles (B) in each constant x (midpoint)
plane. The final image (C) is formed where the wavefront circles intersect the zero offset (he
=0) plane and is the ellipse predicted from constant velocity prestack migration theory.

These constant velocity concepts can easily be extended to vertical velocity variations
because a vertical alignment of common scatterpoints (in (x,z)) will result in a set of
traveltime surfaces with the same vertical alignment. Thus each CSP gather still
corresponds to scattered energy from a single migrated trace. In a practical setting,
migration velocities are allowed to vary from one CSP gather to another which makes
the theory a "time migration".

The velocity dependence of he is not strong and is easily handled by the common
iterative approach of assuming a trial velocity function and later refining that guess. As
data is mapped into the CSP gathers, it is binned at some sensible bin size (usually half
of the receiver group interval) and thus a great reduction in data volume occurs. Since
the traces are mapped at constant time, no expensive trace interpolations are required
(though static corrections should already be applied). Equivalent offsets are never less
than source-receiver offsets (and often are much greater) so CSP gathers are much
more sensitive velocity analysis instruments than CMP gathers.

Equations (1) and (2) were derived for 2-D data but similar expressions result for 3-
D geometries and the equivalent offset may still be found using the generalized
formalism in Appendix A. Thus, for each output point in a 3-D survey, CSP gathers
may be formed in which all input traces are mapped to equivalent offset bins and
scattered energy is distributed along hyperbolic paths. Conceptually, for each
scatterpoint and each source-receiver pair, the vertical plane of the ray path from
scatterpoint to receiver and the similar vertical plane from source to scatterpoint are
rotated into a new vertical plane replicating figure 1. The variables x and h defined in
the new plane facilitate the computation of the equivalent offset but do not directly relate
to the original 3-D geometry.

To summarize, prestack time migration by equivalent offset is done by first forming
CSP gathers for each desired migrated trace (scatterpoint position) and then imaging
those gathers. Each input trace contributes to all CSP gathers within the migration
aperture and is mapped at constant time to a spatial position in each gather given by the
trace's equivalent offset. Once final velocities are determined (and the gathers reformed
if the initial guess velocity was wildly wrong) the final imaging is done by migrating
each gather with an algorithm identical to post-stack migration and evaluating
(retaining) the migrations only at zero equivalent offset. Thus another large saving over
conventional prestack Kirchhoff techniques is realized because the time consuming
steps of dip dependent scaling and antialias filtering are performed on the CSP gathers.
The first order approximation to this imaging step is conventional NMO correction and
stacking of the CSP gathers.

The preceding justifications of EOM are purely kinematic. Next, we present a formal
justification of EOM by showing that, in the constant velocity case, it is a Kirchhoff
analog to prestack migration as formulated by Stolt (1978) in the Fourier domain. This
is done by deriving, from Stolt's equations, the Fourier parallel to EOM, which we call
equivalent wavenumber migration (EWM), and then showing that EOM is a
conventional Kirchhoff analog to EWM while the latter is an exact prestack migration in
the Fourier domain. Thus the theoretical basis for EOM is at least as good as that of
NMO-DMO-poststack migration. The extension of both algorithms to the practical case
of non-constant velocity is approximate though we believe there are a number of
significant advantages to EOM (as mentioned above).
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DERIVATION OF THE EQUIVALENT WAVENUMBER ALGORITHM

Let   Ψ0 x,h,t  represent the prestack data for a 2-D experiment in midpoint and half-
offset coordinates. Then its 3-D Fourier transform is:

  φ0 k x,k h,ω = Ψ0 x,h,t ei ω te–i kxxe–i khhdx dh dt

or   φ0 k x,k h,ω = Ψ0 x,h,t exp i ω t–i k xx–i k hh dx dh dt (3)

Here kx and kh are wavenumbers for x and h while ω is temporal frequency. (Note
that these two expressions differ only in mathematical syntax and are both presented for
clarity. Also we neglect the Fourier transform constant scale factors). Stolt's prestack
theory then leads to the following expression for the "Stolt wavefield":

  Ψ x,h,t,z = φ0 k x,k h,ω exp i k zz exp –i ω t+i k xx+i k hh dk xdk hdω (4)

where:

  
k z =

1
2

2ω
v

2

– k x–k h

2
+

1
2

2ω
v

2

– k x+k h

2
(5)

Equation (4) is an explicit formula for the Stolt wavefield in terms of the prestack
data. The Stolt wavefield is a four dimensional construct that can be evaluated to yield
either the prestack data or the migrated section as follows:

  Ψ x,h,t,z=0 = Ψ0 x,h,t = φ0 k x,k h,ω exp –i ω t+i k xx+i k hh dk xdk hdω

= the prestack data (6a)

and

  Ψ x,h=0,t=0,z = φ0 k x,k h,ω exp i k zz exp i k xx dk xdk hdω

= the prestack migrated section (6b)

These expressions, first derived by Stolt (1978), are presented in a variation of the
notation of Hale (1983) and a summary derivation may also be found in Gazdag and
Sguazzero (1984). The vertical wavenumber, kz, as given by (5), is found from a
double square root equation which is the Fourier dual of equation (1). In precisely the
same way as the time domain derivation (Bancroft and Geiger 1994, Bancroft et al.
1995), the Fourier DSR can be rewritten as a single square root involving a new
"equivalent" wavenumber. Thus we define equivalent wavenumber, ke, implicitly
through:

 2k z = k2 – k x–k h

2
+ k2 – k x+k h

2
= 2 k2 – ke

2  where 
  

k =
2ω
v

(7)

The algebraic solution for ke is presented in Appendix A. The result is:
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2 =kx

2 + kh

2 +
kx

2kh

2

kz

2 =
1
2

kx

2+kh

2+k2 –
1
2

k2–kx

2–kx

2
2

–4kh

2kx

2  (8)

Note that (8) presents two equivalent forms for ke, the second being better suited to
our derivation but the first is more comparable to (2). Figure 5 shows kz(kx,kh) in
perspective view (A) and plan view (B). The diamond shaped domain of computation is
defined as the range of (kx,kh) for which kz is real and thus evanescent waves are not
represented. Note the strong similarity to figure 2. Figures 5-C and 5-D show
kz(kx,ke) in perspective and plan views. Note that contours of kz (the migration phase
shift) have become functions of ke only which suggests that great simplification can be
found by mapping the prestack spectrum from (kx,kh) space to (kx,ke) space.
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Fig. 5. A: Perspective view of the kz surface (eqn 5) for a prestack migration with
v=2000m/sec and frequency = (2π)30 . B: Plan view of the surface in A. C: Perspective view
of the kz surface after mapping to (kx,ke,kz) space. D: Plan view of the kz surface after
mapping to (kx,ke,kz) space. Contours are constant kz . The diagonal boundaries of the
triangular regions (in C and D) are defined by abs(kx) = abs(ke).

We proceed by changing the Fourier integration variables in (6b) from (kx,kh,k) to
(kx,ke,k). The details of the derivation are in Appendix B and the results are:
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  Ψ x,h=0,t=0,z =
v
2

φ x,ke,k exp i k2 – ke

2 z dkedk (9)

where:

  φ x,ke,k ≡ f kx,ke,k φ0 kx,ke,k exp ikxx dkx (10)

and:

  
φ0 k x,k e,k = φ0 k x, sign k h

1
2

kx

2+kh

2+k2 –
1
2

k2–kx

2–kx

2
2

–4kh

2kx

2 , k

  = φ0 k x,k h,k (11)

and:

 
f k x,k e,k =

k e

k h k e

1 –
ke

2–kh

2 k e

k2+kx

2–ke

2  with 
 

k h k e = sign k e

k2–ke

2 ke

2–kx

2

k2–ke

2+kx

2 (12)

DISCUSSION AND EXTENSIONS

Equation (9) is an exact reformulation of (4) and thus represents a solution to the
constant velocity migration problem of the same accuracy as Stolt's FK theory. While
(4) involves a triple integration, a double integration is apparent in (9) because one
integral has been absorbed into the definition of   φ x,ke,k  . Thus, each x location is
imaged independently in (9) because all x data movement has been incorporated into

  φ x,ke,k .

We identify the function   φ x,ke,k , given by (10), as the Fourier transform (2D) of

CSP gathers at location x. Equations (11) and (12) show that   φ x,ke,k  is computed by
mapping at constant temporal frequency (i.e. k) the spectrum of the unmigrated data,

  φ0 kx,kh,k  from (kx,kh) space to (kx,ke) space (note that we map  kh to ke of the same
sign) and applying a scaling operation, followed by an inverse Fourier transform over
kx . Though algebraically complex, the mapping operation is conceptually simple when
depicted graphically as in figure 5. Essentially, each contour in figure 5-B becomes
horizontal in 5-D. Figure 5-B can be imagined split along kh = 0 with the upper half
mapping to the upper triangle of 5-D and vice-versa for the lower half. The point where
a given contour in 5-B touches kh = 0 maps to one of the diagonal boundaries of the
triangular regions in 5-D. (These boundaries are determined by abs(ke)= abs(kx) and
are not evanescent boundaries. The evanescent boundary is at the top (or bottom) of the
triangles.) The mapping causes no spectral distortion along kx = 0 and maximal
distortion at kh = 0.
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The scaling operation is simply that required to conserve the total integrated
spectrum. The scale factor  f k x,k e,k  is a purely real function of the wavenumbers and
does not have a (complex) phase term. Figure 6 examines the function f given by (12)
which is the entire scaling function applied to the spectrum as it is mapped. In 6-A
which shows the function f at constant values of kh, the curves end at the kx axis (at kh
= k-kx) which corresponds to the transition to evanescent energy. A curve is not shown
for kh = 0 because the scaling factor is infinite. Intuitively, kh = 0 is expected to
correspond to horizontal events in a CMP gather which occur only at zero offset;
however, this is an instantaneous spectral notion. Any real Fourier spectrum over some
range of offsets will always contain kh = 0 as well as other spectral components and a
practical implementation of this theory would have to apply a finite scale factor. Figure
6-B shows a map of  f k x,k e,k  over (kx,kh) space similar to 5-B. It is apparent that the
scaling factors are near unity over most of the spectrum with large values occurring
only near zero kh for non-zero kx.

Spectral scaling function f for k=.186
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Fig. 6. A: The spectral scaling function, f(kx,ke,k), is shown versus kx for k=.186 and for a
range of different kh(ke) values. Each curve is labeled with its kh value. The curves terminate
at kx = k - kh which is the evanescent boundary of kz(kx,kh) as shown in figure 6-B. B: The
function f(kx,ke,k) is shown in map view. White is large amplitude and black is a value near 1.
Contours are shown only on the top half of the figure for clarity.

The reason for these large scaling factors near kh = 0 is that the mapping compresses
this portion of the spectrum greatly into the boundary near ke = kx (figure 5-D). In
order to conserve the total integrated spectrum, the compressed portion of the spectrum
must increase in amplitude. Put another way, if the migration is performed without
these scaling factors, then the low kh values will not contribute their proper strength to
the final image. Intuitively, kx = 0 must correspond to flat events immediately beneath
the scatter point. Since kx = 0 is passed undistorted, kh = 0 at kx = 0 is also
unaffected. Spectral components with kh = 0 but at other values of kx must correspond
to scattered energy from some non-zero inline distance away from the scatter point.
Thus these events have a finite equivalent offset and map to a position some distance
down a hyperbola in the CSP gather and hence to a dipping event in ke. Thus kh = 0
always maps to some finite ke unless kx also is zero.

The recognition that equation (10) forms CSP gathers in the Fourier domain stems
from several observations. We have already noted that, whatever   φ x,k e,k  is, it is
imaged independently for each x by diffraction summation precisely as is expected of
CSP gathers. Ideally, we would like to be able to show that the impulse response of
(10) is essentially the constant-time hyperbola discussed previously and shown in
figure 4. We have not been able to do this analytically and so present a numerical
simulation in figure 7. To create this image, we constructed the analytic spectrum of an
impulse at x = 0, h = 500, and t = 2.0. This was mapped to (kx,ke), scaled by f, and
the inverse Fourier transforms were performed numerically. The result is shown in
figure 7 for the t = 2.0 plane and is kinematically identical to the hyperbola in figure 4.
The additional amplitude effects are contained in the scaling described here as required
by scalar wave theory.

An approximate implementation of this scaling factor in a space-time Kirchhoff
algorithm can proceed by first writing:

  
sin θx =

k x

k
; sin θh =

k h

k
; sin θe =

k e

k
(13)

Intuitively, these various angles are apparent emergence angles as seen on different data
gathers. Then the scale function becomes:

  
f =

sin θe

sin θh

1 –
sin2 θe – sin2 θh

1 + sin2 θx – sin2 θe

(14)

If we consider an arrival at time t from a scatterer at xo, then these various angles
can be approximated as:
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Fig. 7. The result of a numerical simulation of the inverse 2-D Fourier transform of equation
(10) is shown. The input data was assumed to be an impulse at h = 500, x = 0, and t = 2.0.
Shown as a gray-level matrix is the t = 2.0 plane of the output in (x,he) space. Shown as a
dashed line is the ray theoretic hyperbola from the t = 2.0 plane of figure 4. The ray hyperbola
has been shifted up by a constant for clarity and actually overlays the hyperbolic image in the
matrix precisely.

  
sin θx =

2 x – x0

vt
; sin θh =

2h
vt

; sin θe =
2h e

vt
(15)

When substituted into (14), this allows an approximate evaluation of the scaling
function, f, in the space-time domain.

 Equation (9) shows that the CSP gathers are imaged independently to form the
migrated section at each x by a process resembling NMO and stack. In fact, we can
consider (9) to be the limiting case of a Stolt-like wavefield in which the equivalent
offset, rather than the half-offset, is set to zero. That is, define the "Stolt equivalent"
wavefield:

  Ψe x,he,t,z =
v
2

φ x,ke,k exp i k2 – ke

2 z exp –ikvt /2+ikehe dkedk  (16)

and note that equation (9) results from:
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  Ψ x,h=0,t=0,z = Ψe x,he=0,t=0,z (17)

The formal similarity between (16) and the post-stack migration equations is
striking. In fact, setting t = 0 in (16) gives an identical expression to post-stack Stolt
migration for each x. Thus (16) does indeed say to move energy along hyperbolae in
equivalent offset. The imaging operation required for the CSP gathers is thus a 2-D
post stack migration, in (he,t) space, with the result being retained only at zero he. As a
first order approximation, the gathers can simply be move-out corrected, scaled and
stacked. So we conclude:

  Ψe x,h e,t,z=0 = the unmigrated CSP gathers

Ψe x,h e=0,t=0,z = the prestack migrated image

The Fourier theory outlined here is explicitly developed assuming constant velocity;
however, an approximate v(z) extension is easily formulated. First, as has already been
noted, the formation of CSP gathers is still valid because a vertical array of scatterers in
depth will produce a vertically aligned array of diffraction surfaces in time. Thus the
energy which should be imaged at some location x, is still coherently formed in the
CSP gather at that location; so, once formed, the gathers may be imaged independently.
Since equivalent wavenumber (and equivalent offset) depend on velocity, their
computation must become depth (or vertical traveltime to) variant. For a Kirchhoff
implementation, we have found it satisfactory to regard 'v' in equation (2) as vrms(to).
Of course, the vrms assumption is only necessary when physical meaning must be
ascribed to the imaging velocities. As with conventional stacking, CSP imaging
proceeds with the velocities chosen from velocity analysis which best image the CSP
gathers.A more complete discussion of velocity analysis of CSP gathers is found in our
companion paper (Bancroft et al. 1996).

A Fourier implementation which accommodates vertical velocity variations might
proceed with a stretch technique (Stolt 1978, Yilmaz 1987) or with a phase shift
method (Gazdag 1978). A cursory examination of the prestack implementation of phase
shift migration (Gazdag and Sguazzero, 1984) shows that it will also simplify under the
equivalent wavenumber assumption. If the equivalent offset binning is not done, then
the process of CSP gather formation is reversible. Hence, with a horizontally layered
velocity model, a recursive scheme of forming CSP gathers appropriate for a layer
velocity, downward extrapolation through the layer by phase shift, and unforming the
gathers is theoretically defensible. As with poststack migration, the result after n steps
will be a phase expression which is a summation of the phase shifts for each step.
Also, it seems likely that the phase shift scheme would be highly accurate. However,
we have no immediate intention of implementing the Fourier theory, mainly because of
the typically irregular prestack geometry, and feel that its main value lies in verifying
and improving the Kirchhoff implementation described in Bancroft et al. (1994 and
1996).

The extension to lateral velocity variations seems much more problematic since the
CSP gathers are no longer independent. Intuitively, we expect a CSP gather formed at
the surface to correspond to scatterpoint locations along an image ray (Hubral and Krey
1980). This suggests that any CSP imaging algorithm which correctly handles lateral
velocity variations must allow energy transfer between the gathers. It is not clear that
the theory presented here can be extended to this circumstance without major
alterations.
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CONCLUSIONS

Prestack time migration may be performed, with high precision and efficiency, by
the process of sorting the data into CSP gathers at equivalent offset and then imaging
those gathers. This process, called EOM, is the space-time domain Kirchhoff
approximation to a Fourier theory, called EWM, which is an exact reformulation of
Stolt's (1978) constant velocity algorithm. Both EOM and EWM are based on the
recognition that the double square root equations underlying each can be written exactly
as single square roots which define equivalent offset and equivalent wavenumber. The
EWM process forms the CSP gathers in the Fourier domain by mapping and scaling the
3D spectrum of the 2D prestack wavefield. Imaging of the resultant gathers may be
done exactly by an algorithm formally identical to post stack migration of each and
retaining only zero equivalent offset or approximately by NMO removal and stacking.
The approximate extension of the constant velocity theory to vertical velocity variations
is straight forward.
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APPENDIX A: GENERALIZED EQUIVALENT SQUARE ROOT

In the prestack imaging theory presented in this paper, it is desirable to write the sum
of two square roots as a single equivalent square root. We now derive a generalized
expression for such an algebraic transformation. The following equation expresses the
basic problem:

 d2 + a2 + d2 + b2 = 2 d2 + c2 (A-1)

where d, a, and b are known and c is to be found in terms of them. Subtracting
 d2 + b2  from both sides and squaring gives:

 d2 + a2 = 4 d2 + c2 + d2 + b2 – 4 d2 + b2 d2 + c2 (A-2)

Canceling common terms, dividing by  d2 + c2 , and rearranging:

 
4 d2 + b2 =

4 d2 + c2 + b2 – a2

d2 + c2
(A-3)

squaring:

 
16 d2 + b2 = 16 d2 + c2 + 8 b2 – a2 +

b2 – a2
2

d2 + c2 (A-4)

Rearranging again:

 
c2 =

1
2

a2 + b2 –
1
16

a2 – b2
2

d2 + c2 (A-5)

This result, though not fully solved for c, is a good starting point for specialization
to specific cases. We note that the denominator of the second term is proportional to the
square of equation (A-1), so that formally, it is trivially easy to fully solve for c by
substitution of (A-1) into (A-5). Let us now examine several special cases and verify
that this is the correct result.

Case 1: 2-D Prestack Kirchhoff Imaging

Here the double square root equation of interest is equation (1):

 vt = z2 + x+h
2

+ z2 + x–h
2

= 2 z2 +he

2 (A-6)

To apply (A-5), let:

  a = x+h ⇒ a2 = x2 + 2xh + h2

b = x–h ⇒ b2 = x2 – 2xh + h2

c = h e and d = z
(A-7)

so, substituting A-7  into A-5 and simplifying gives:
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he

2 = x2 + h2 –
4x2h2

v2t2 (A-8)

This is equation (2). Note that the simplification process used:

 v2t2 = 4 z2 +he

2 (A-9)

Also of interest is A-8 solved for h:

 
h2 =

he

2 – x2

1 –
4x2

v2t2

=
v2t2 he

2 – x2

v2t2 –4x2 =
z2 +he

2 he

2 – x2

z2 +he

2 – x2 (A-10)

Case 2: 2-D Equivalent Wavenumber Imaging

In this case, we wish to solve equation (7) where the square roots we are working
with all have a minus sign in them instead of a plus sign. As a starting point we take:

 k2 – k x+k h

2
+ k2 – k x–k h

2
= 2 k2 – ke

2 (A-11)

If we define:  a2 = –A2, b2 = –B2, and c2 = –C2 , then, equation (A-5) becomes:

 
C2 =

1
2

A2 + B2 +
1
16

A2 – B2
2

d2 – C2 (A-12)

Now, let:

  A = k x+k h ⇒ A2 = kx

2 + 2k xk h + kh

2

B = k x–k h ⇒ B2 = kx

2 – 2k xk h + kh

2

C = k e and d = k
(A-13)

and note:

 kz

2 = k2 – ke

2 (A-15)

Substituting (A-14) and (A-15) into (A-13) and simplifying gives:

 
ke

2 =kx

2 + kh

2 +
kx

2kh

2

kz

2 (A-16)

This is the first form for ke given in equation 8. To obtain the other, we first substitute
(A-14) into (A-15) and solve for kx(ke, kh) or kh(ke, kx):

 
kx

2 =
ke

2–kh

2

1+
kh

2

k2–ke

2

=
k2–ke

2 ke

2–kh

2

k2–ke

2+kh

2 (A-16)

and
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kh

2 =
ke

2–kx

2

1+
kx

2

k2–ke

2

=
k2–ke

2 ke

2–kx

2

k2–ke

2+kx

2 (A-17)

Either of these expressions can be manipulated to obtain a polynomial in ke2:

 ke

4 – ke

2 kx

2+kh

2+k2 +k2kx

2+kh

2kx

2+k2kh

2 = 0 (A-18)

This can be solved for ke2 using the quadratic equation. The result is:

 
ke

2 =
1
2

kx

2+kh

2+k2 –
1
2

k2–kx

2–kx

2
2

–4kh

2kx

2 (A-19)

This is the second form of equation (8). Note that a sign choice has been made for the
radical in (A-19). The choice is determined by requiring that ke2 = kx2 in the limit as

kh2 approaches zero.

In appendix B, an expression for ∂kh/∂ke will be required. The easiest way to obtain
this is to differentiate (A-18). For example, we differentiate with respect to ke with kx
held constant to find ∂kh/∂ke. The resultant expression is:

  ∂k h

∂k e

=
k e

k h

1–ν
(A-20)

where

  
ν =

ke

2–kh

2

k2+kx

2–ke

2 =
ke

2–kh

2

kz

2+kx

2 =
kx

2 kz

2+kh

2

kz

2 kz

2+kx

2
(A-21)

As is evident, ν must always be non-negative for real wavenumbers. A similar
expression for ∂kx/∂ke is:

  ∂k x

∂k e

=
k e

k x

1–µ
(A-22)

where:

  
µ =

ke

2–kx

2

k2+kh

2–ke

2 =
ke

2–kx

2

kz

2+kh

2 =
kh

2 kz

2+kx

2

kz

2 kz

2+kh

2
(A-23)
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APPENDIX B: EQUIVALENT WAVENUMBER MIGRATION
DERIVATION

In this appendix, equations (9), (10), (11), and (12) will be derived. The procedure
is a straight forward change of integration variables from kh to ke in (6b) which is the
expression for the prestack migrated wavefield:

  Ψ x,h=0,t=0,z =
v
2

φ0 k x,k h,k exp i k zz exp i k xx dk xdk hdk (B-1)

where k=2ω/v has been used.Formally changing variables from kh to ke:

  
Ψ x,h=0,t=0,z =

v
2

φ0 k x,k h k e ,k exp i k zz exp i k xx dk xdk
∂k h

∂k e

dk e (B-2)

with  k h k e  given by the square root of (A-17). (As with all integrations in this paper,
the integration limits are assumed to be over all possible values. Generally this is from -
∞ to +∞ though care must be taken to ensure that evanescent contributions (i.e.
imaginary wavenumbers) result in integration kernels which exponentially decay.) Next
we define   φ0 k x,k e,k  which is the result of mapping   φ0 k x,k h,k  from (kx,kh,k) space
to (kx,ke,k) space using equation (A-19):

  
φ0 k x,k e,k = φ0 k x, sign k h

1
2

kx

2+kh

2+k2 –
1
2

k2–kx

2–kx

2
2

–4kh

2kx

2 , k

  = φ0 k x,k h,k (B-3)

This is equation (11). Since equation (8) is a relation between the squares of kh and ke,
it leaves the sign indeterminate and we have chosen to map +kh to +ke and -kh to -ke.
As depicted in figure 5, contours of constant ke (which are also constant kz contours)
in (kx, kh) space can be seen to grade from nearly circular (near the origin) to nearly
diamond shaped (near the evanescent boundary). The spectral mapping takes the upper
half of each contour in (kx, kh) space to a horizontal line in the upper triangular region
of (kx,ke) space and vice-versa for the lower half of each contour.

Next, substitution of (A-20) and (B-3) into (B-2) results in:

  Ψ x,h=0,t=0,z =

  v
2

k e

k h k e

1–ν k x,k e,k φ0 k x,k e,k exp i k2 – ke

2 z exp i k xx dk xdk edk (B-4)

Note that we have also written kz explicitly in terms of k and ke. Since the migration
phase shift, exp(ikzz), no longer contains explicit kx dependence, the kx integration is a
non-phase shifting simple inverse Fourier transform and can be performed first. We
define:
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  φ x,k e,k ≡ f k x,k e,k φ0 k x,k e,k exp i k xx dk x (B-5)

where:

  
f k x,k e,k =

k e

k h k e

1 – ν k x,k e,k =
k e

k h k e

1 –
ke

2–kh

2 k e

k2+kx

2–ke

2 (B-6)

These are equations (10) and (12). With these definitions, (B-4) becomes:

  Ψ x,h=0,t=0,z =
v
2

φ x,k e,k exp i k2 – ke

2 z dk edk (B-7)

This is equation (9).


