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ABSTRACT

A method of prestack time migration is presented that is simpler, faster, and
provides better velocity information than conventional methods.  It is based on
prestack Kirchhoff time migration and can be applied to both 2-D and 3-D data.  The
method is divided into two steps, a gathering process that forms common scatterpoint
(CSP) gathers, and an imaging process using a Kirchhoff migration performed
independently on each CSP gather.

The CSP gathering process sums input traces into equivalent offset bins in each
CSP gather with no time shifting.  The equivalent offset is defined by an exact
algebraic transformation of the double square root (DSR) equation of prestack time
migration into a hyperbolic form.  A CSP gather is similar to a CMP gather as both
contain offset traces, and both represent a vertical array of scatterpoints.  CSP gathers
can be formed at any arbitrary location, have higher fold in their offset bins, and have
a much larger offset range due to the gathering of all input traces within the migration
aperture.

The imaging process collapses each CSP gather into a single migrated output trace.
It is performed as a Kirchhoff process which consists of scaling, filtering, normal
moveout (NMO) correction, and stacking.  The migration velocities are determined
by conventional velocity analysis of the CSP gathers.

Significant computational savings result from delaying arithmetic operations on
the input samples until after the CSP gather has been formed.  The high fold and large
offsets of the CSP gather provide better focusing and improved velocity analysis.
This space-time domain method is suitable for uneven geometries, enables velocity
analysis at random locations, and permits prestack migration of a 3-D volume into an
arbitrary 2-D line.  It may also be adapted to migrate from topography, and to migrate
converted wave (P-SV) data.

Results from conventional processing of real 2-D and 3-D data are compared with
the new method, demonstrating improved velocity analysis and superior migrated
images.

INTRODUCTION

Migration is a process that attempts to reconstruct an image of the earth’s reflecting
structure from elastic wavefield energy recorded at the surface in seismic traces.
Since the invention of the CMP processing method (Mayne, 1962), conventional
processing has concentrated on producing a stacked section from common midpoint
(CMP) gathers, followed by a poststack migration based on the stacking velocities.
Stacking velocities generally differ from those required for poststack migration, and
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some form of migration velocity estimation is usually required.  Further processing
advances recognized that dip dependent stacking velocities and reflection point
smearing could be corrected by the inclusion of dip moveout (DMO) (Hale 1984,
Deregowski 1986) or prestack migration (Shultz and Sherwood 1980, Sattlegger et al.
1980).  The use of these prestack processes in velocity analysis loops enabled a more
accurate estimate of the subsurface velocities and improved subsurface images.

DMO and poststack migration are currently more economical than typical methods
of prestack migration; consequently, in areas with smooth velocities, DMO tends to
be the current processing standard.  In areas where the smooth velocity criteria fails,
prestack migration should be the preferred processing method.  Typical prestack
migration methods include migration of source records (Schultz and Sherwood 1980,
Reshef and Kosloff 1986, van der Schoot et al. 1989, Lee and Zhang 1992, Ng 1994),
migration of constant (or limited) offset sections (Sattlegger et al. 1980, Deregowski
1990), and migration by alternating downward continuation between shot gathers and
geophone gathers (Denelle et al. 1986, Diet et al. 1993).  This paper will refer to full
prestack Kirchhoff migration (Lumley 1989, Lumley and Claerbout 1993) as the
scaled and filtered summation of input samples along a defined trajectory for each
output migrated sample.  The historical basis of prestack migration dates back to the
early 1970’s, as described in papers by Lindsey and Herman (1970) and Rockwell
(1971).  The common use of full prestack migration continues to be limited by
computer hardware and long run times.

The method presented in this paper is based on the principles of full prestack
Kirchhoff time migration.  An intermediate step in the process forms prestack
migration gathers at each migration output location with traces sorted by a new offset
measure called equivalent offset.  The gathers are formed with no time shifting, and
scattered energy is aligned with hyperbolic moveout.  After the gathers have been
formed, a Kirchhoff migration of each CSP gather to a zero offset trace completes the
prestack migration.  This new method is called equivalent offset migration (EOM)
with initial results reported by Bancroft and Geiger (1994), Bancroft et al. (1994),
Bancroft and Wang (1994), Geiger et al. (1995), and Bancroft et al. (1995).

A companion paper (Margrave et al. 1996) provides mathmatical rigor by deriving
a parallel method called equivalent wavenumber migration (EWM) from the Fourier
transform theory established by Stolt (1978).  EWM is shown to be an exact
reformulation of prestack FK migration, and EOM is its Kirchhoff time domain
implementation.

Prestack migration model

The full Kirchhoff approach to prestack migration is based on a model of
scatterpoints which scatter energy from any source to all receivers (in contrast to
specular reflections assumed by the CMP method).  Huygens principle implies that an
organized arrangement of scatterpoints will produce a coherent reflection event.  The
surface position of a vertical array of scatterpoints is referred to as the common
scatterpoint (CSP) location.  The objective of prestack migration is to gather all of the
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scattered energy and relocate it to the position of the scatterpoints.  The traditional
concept of full prestack Kirchhoff migration assumes an output scatterpoint, and then
gathers the appropriate energy from all available input traces.  This procedure is
repeated for every output scatter point.

The time of scattered energy in each input trace (relative to a scatterpoint) is
identified by the traveltime along the raypaths between the source, scatterpoint, and
receiver.  Raypath traveltimes may be estimated by a number of different methods,
such as hyperbolic computations for time migration or wavefront computations for
depth migration.  After time migration the samples in a trace follow the trajectory of
an image ray (Hubral and Krey 1980, Black and Brzostowski 1991).  This concept of
an image ray allows a time migration to be converted to an estimate of a depth
migration.

Scatterpoint traveltimes - Cheop’s pyramid

Most full prestack Kirchhoff time migrations assume linear ray paths from the
source to scatterpoint, and from the scatterpoint to receiver as illustrated in Figure 1.
The total traveltime T is estimated from the source to scatterpoint time Ts, and the
scatterpoint to receiver time Tr by

T T Ts r= + , (1)

FIG. 1.  Geometry for prestack Kirchhoff time migration showing a raypath from source S to
receiver R via a scatterpoint.

From the geometry of Figure 1, and assuming (for the moment) that the velocity V
is constant, these terms define the double square root (DSR) equation
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where z0 is the depth of the scatterpoint, x the distance from the common midpoint
(CMP) to the common scatterpoint (CSP), and h is the half source-receiver offset.
Extending equation (2) to include a variable migration velocity Vmig gives
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where the migration velocity is the RMS approximation of Tanner and Koehler
(1978) evaluated at time T0 = T(x=0, h=0).  T0 is the two-way zero offset time
computed from the average velocity Vave as

T
z

Vave
0

02= . (4)

The DSR equation may be used to compute the traveltime T for one scatterpoint at
T0 into a continuum of 2-D x and h locations as shown in Figure 2a.  This surface is
known as Cheop’s pyramid (Claerbout 1984 pages 164-163).  Cheop’s pyramid is the
prestack migration equivalent to the zero offset hyperbola of 2-D poststack migration.
For comparison purposes, a hyperboloid for the same scatterpoint is shown in Figure
2b.  The left side of Figure 2a illustrates the non-hyperbolic moveout in a CMP gather
offset from the scatterpoint and can be compared with the hyperbolic shape on the left
side of the hyperboloid of Figure 2b.

h

t
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h

t

CMP (x)

(a) (b)

FIG. 2.  Perspective view of (a) Cheop’s pyramid defined by the DSR equation (6) and (b) an
hyperboloid created from the same scatterpoint.

The migration velocity for Cheop’s pyramid is defined at the apex, regardless of
the spatial or temporal extent of the scattered energy.  The Cheop’s pyramid is a
useful visualization for 2-D scattered energy but is not applicable to 3-D data.  A
technique for handling the 3-D case will be presented later in this paper.

Kirchhoff prestack imaging

Prestack imaging refers to the process by which energy distributed over Cheop’s
pyramid is collapsed back to the scatterpoint location at the pyramid’s apex.  Full
prestack Kirchhoff migration directly sums all energy on Cheop’s pyramid to the
apex.  In contrast, dip moveout (DMO) processing using NMO, DMO, and inverse
NMO or Gardner’s DMO (Gardner et al. 1986) conceptually reshapes the data in
Cheop’s pyramid to a hyperboloid, which is NMO corrected, stacked, and imaged
with poststack migration.  Conventional processing based on CMP gathers is forced
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to ignore the non-hyperbolic shape of Cheop’s pyramid, which limits imaging in
structured areas.

In addition to kinematic summation (using the DSR equation), Kirchhoff imaging
requires the scaling, antialias filtering, and phase filtering of the input data for every
input sample (Gazdag and Squazzero 1984, Silva 1992, Lumley and Claerbout 1993,
Lumley et al. 1994).  These intermediate operations account for a significant
proportion of the computational expense of the migration process.

Prestack migration gathers

Due to practical and historical reasons, conventional processing has attempted to
collapse the energy on Cheop’s pyramid in two kinematic steps; NMO removal and
poststack migration.  These steps require two different velocities.  In contrast, full
prestack Kirchhoff time migration uses a single focusing operation with one velocity
function that is defined at the apex of Cheop’s pyramid.  Finding this prestack
migration velocity has been an elusive goal.  Stolt and Benson (1986, page 36)
expressed the desire for an operator “which migrates the unstacked data but leaves
NMO and stack undone”.  In a subsequent figure (Stolt and Benson 1986, Figure
1.17) a prestack migration gather is illustrated in which the input traces are sorted by
offset.  Velocities defined from such a gather should yield the prestack migration
velocities.

Forel and Gardner (1988) describe a Fourier method based on DMO before NMO
to form prestack migration gathers.  More recently Ferber (1994) described an
alternate time domain method that is based on Gardner’s DMO.  These and other
methods create prestack migration gathers with very high fold and with apparent
offsets that can be much greater than the maximum source receiver offset.  The very
high fold is due to the binning of all input traces within the migration aperture into the
prestack migration gather.  Such gathers allow more accurate velocity analysis than is
possible with conventional CMP gathers.

THE EQUIVALENT OFFSET AND COMMON SCATTERPOINT (CSP)
GATHERS

The equivalent offset

The equivalent offset is defined by converting the DSR equation (3) into an
equivalent single square root or hyperbolic form.  This is accomplished by defining a
new source and receiver collocated at the equivalent offset position E in Figure 3.
The equivalent offset is chosen to maintain the same total traveltime 2Te as the
original path T, i.e.,

T T T Ts r e= + = 2 . (5)

Equating the traveltime for the equivalent offset raypath with the DSR equation we
get
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where we may solve for the equivalent offset he (Appendix 1) to get
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This equation is roughly a quadratic sum of the distance between the CSP and the
CMP x, and the half source-receiver offset h.  The bracketed term in equation (7)
contributes a small time and velocity dependence to the equivalent offset.

FIG. 3. Illustration of prestack migration showing the equivalent offset position E for a
collocated source and receiver.  Compare to Figure 1.

Common scatterpoint gathers

Equation (6) shows that scattered energy from a particular scatterpoint, when
considered as a function of equivalent offset, will be distributed along a hyperbolic
path.  Thus a new type of prestack migration gather can be formed by ordering all
traces according to their equivalent offset from a presumed scatterpoint location. We
call such gathers common scatterpoint (CSP) gathers.  Energy in each input trace is
copied directly to all CSP gathers (within the migration aperture) without time
shifting.

In practice the equivalent offset is quantized to discrete bins and all energy which
falls into a bin is summed.  A consequence of the time-varying equivalent offset
(equation 7) is that an input trace may have its samples spread over a number of offset
bins (Figure 4).  The first useful energy in an input trace comes from a zero depth
scatterpoint at the CSP location and has an equivalent offset heα defined by

h xeα = . (8)

The starting time Tα of this useful energy is given by
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where the velocity at the surface (T0 = 0) is give by V0.  Energy at this point will
migrate to the surface at the CSP location with a dip of 90 degrees.

FIG. 4.  Illustration of data mapping from an input trace to bins in a CSP gather.  Only a
portion of the input trace is useable for this CSP gather and is identified by the various levels
of gray.  The data mapping occurs at constant time.

When the input time tends to a large value,  the equivalent offset tends to a vertical
asymptote heω given by

h x heω
2 2 2= + , (10)

as illustrated in Figure 4.  In some cases, the number of offset bins for a given input
trace may be reduced to one bin at offset heω.  This benefit also occurs when either x
or h are small, or when the first useful scatterpoints are well below the surface as in
marine data.

It may appear from equation (7) that the equivalent offset needs to be computed for
each input sample.  However, because the CSP gather is formed by compositing
traces into equivalent offset bins, only times at which the input samples start in a new
bin need to be computed.  The initial equivalent offset heα may be computed using
equation (8) and assigned to an appropriate bin.  The following samples are added to
this bin until the equivalent offset increases to the bin boundary at which point the
input samples are added to the next bin.  The time at which these transitions occur is
Tn, where n is the bin index, and may be found from rearranging equation (7) to give
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where hen is the equivalent offset of the nth bin boundary.  The transition times of each
offset bin for a given input trace may be computed to allow efficient copying of the
samples into the respective bins.  In practice the time dependence of velocity at T0

must be addressed in equations (7) and (11) as is the case with all NMO applications.

Extension to 3-D data

In a 3-D world where velocities vary only with z, the traveltime for scattered
energy depends only on the distances from the source and receiver to the scatterpoint
and not on their relative azimuths.  This symmetry can be exploited to extend
equivalent offset concepts to 3-D in a way appropriate for time migration.  A plan
view of a source S, scatterpoint CSP, and receiver R is shown in Figure 5, with source
to scatterpoint offset hs, and the scatterpoint to receiver offset hr.   Converting this 3-D
geometry to a 2-D geometry is accomplished by rotating the vertical planes
containing these source and the receiver raypaths into a common vertical plane (with
an arbitrary azimuth), also illustrated in Figure 5.  Values of x and h are now
computed from scalar values of hs and hr , i.e.,

x
h hs r=

+
2

, (12)

and

h
h hs r=

−
2

. (13)

When inserted into equation (7), these equations allow the computation of a 3-D
equivalent offset.  The geometry in the common plane is not directly related to the
original source receiver offset or the CMP location of the 3-D geometry.  Azimuthal
information of the original source and receiver raypaths will be lost, but could be
preserved if required.

FIG. 5.  Plan view of a 3-D showing a source S receiver R and a CSP location.  To compute
the equivalent offset he, the vertical planes containing the source and receiver raypaths are
rotated to a common plane
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PROPERTIES OF CSP GATHERS

Equivalent offset mapping

The mapping of 2-D data from an input trace to a CSP gather is defined by
equation (7) and is displayed in a perspective view in Figure 6.  Input traces with
various x and h locations may be identified at intersections of the grid, and each of
these traces will map some energy to the CSP gather.  A CSP gather at a different
location will have a different mapping of the input data.  Consequently, each input
trace will map into many CSP gathers, and each CSP gather contains all traces within
the migration aperture.  In contrast, a CMP gather contains only those traces within a
single CMP bin of Figure 6.  CMP gathers tend to be sparsely populated in offset and
low in fold when compared to CSP gathers, which may contain thousands of input
traces for 2-D data, or hundreds of thousands of input traces for 3-D data, spread over
a few hundred equivalent offset bins.  The extremely high fold and large offsets
enable accurate velocity analysis at each migrated position.  The formation of these
CSP gathers is fast and simple.  CSP gathers can be created at any arbitrary location
within a 2-D line or 3-D volume for velocity analysis, or to image any sub-volume
such as a 2-D line from 3-D data.

CMP (x)

s

r

Offset (h)

t

he

CSP location

FIG. 6. Prestack volume for 2-D data illustrating movement of energy from the input trace to
the CSP gather.  Various shades of gray illustrate the portions of an input trace and their
respective bin locations in the CSP gather.

Velocity analysis

CSP gathers allow a velocity analysis which considers the total traveltime of a
scatterpoint.  The traveltime differential used in CMP velocity analysis is only a
portion of the total traveltime differential (T - T0) derived from equation (6), while all
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of the traveltime differential is used in CSP velocity analysis.  An alternate view is
that CSP velocity analysis is based on the distances from the source and receivers to
the CSP location, and not on the source/receiver offset, thus leading to a more natural
method of processing.

The equivalent offset is time and velocity dependent (equation (7)); however,
many samples are summed into a CSP gather using only the asymptotic equivalent
offset heω (which is independent of both time and velocity), providing stability to the
CSP gathering process when the velocities are unknown.  The CSP gathers may be
formed at a few locations with an estimated velocity, and the gather used to define
more accurate velocities.  The iterations of this process converge very rapidly
(Bancroft and Geiger 1996), and usually only one is required.  Velocities derived
from the CSP gather are imaging velocities which approximate RMS velocities, and
therefore tie reasonably with sonic logs.

The increased offset range and high fold of the CSP gather improves the resolution
of velocity semblance plots compared to those obtained from a conventional super
CMP gather (formed by stacking adjacent CMP gathers).  The improved focusing of
CSP energy illustrates the increased resolving power of prestack migration, and the
requirement that velocities must be quite accurate (less than a few percent error) to
maximize the migrated energy.  In addition, the CSP gather is formed at one location
and preserves the velocity information of dipping events, which is in contrast to the
super CMP gather which mixes the dipping information across the midpoint range of
the contributing CMPs.

The resolution of long path multiples is also improved in the CSP gather, which
suggests that full prestack migration will produce better multiple attenuation than
conventional processing.  The fold of the gathers and the differential moveout
between multiples and primaries are the key determinants of multiple attenuation.
Both of these factors are generally greater for CSP gathers than CMP gathers.

The CSP gathers should not be confused with CMP gathers formed after migration
of constant offset sections or shot records.  The latter techniques sort the migrated
traces into CMP gathers where inverse NMO is applied as in Yilmaz (1987 section
4.4.1).  Theoretically the migrated traces are at zero offset; therefore the offset used in
the inverse NMO is somewhat arbitrary.  The resolution of the resultant velocity scans
will be limited by the source-receiver offset as with unmigrated CMP gathers.  In
addition, errors in the initial guess velocities result in unresolved spatial positioning
errors.  We believe that this method of velocity analysis is less robust and converges
more slowly than the equivalent offset method.

Processing and imaging CSP gathers

After the formation of CSP gathers, the remaining processing steps to complete the
prestack migration are scaling, filtering, NMO removal, and stacking.  Taken
together, these steps form the imaging process which is equivalent to a Kirchhoff
migration of the CSP gathers to an output zero offset trace.  Regular processing
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software may be used, along with conventional velocity analysis techniques.  The
only new algorithms required are those which form the CSP gather.

The efficiency of Kirchhoff migrations is increased by postponing as much scaling
and filtering as possible until after the summation process (Silva 1992).  In our
companion paper (Margrave et al. 1996) theoretical scaling factors are shown to be a
function of (x, h, he), suggesting that some scaling may be required prior to equivalent
offset binning.  However in practice, it appears sufficient to postpone all scaling and
filtering until after the formation of the binned traces in the CSP gathers.  Thus it
becomes economical to apply accurate antialiasing and phase shifting filters before
NMO, and to apply scaling prior to final imaging.  Once the CSP gathers have been
formed, migration parameters (such as dip range, scaling, and filtering) may be
evaluated by forming fully migrated images.  In addition, any signal enhancement
process may be applied to the CSP gathers prior to imaging.  The high fold and full
range of offsets in the CSP gathers enable these algorithms to perform more
effectively than on CMP gathers.

(a) (b) (c)

  

        (d) (e) (f)

FIG. 7.  Prestack migration volume for a 2-D horizontal reflector is shown in (a).  Figures (b)
through (f) show  various kinematic views of CMP and CSP gathers, with (b) a CMP gather
before NMO, (c) the application of NMO to the CMP gather, (d) a CSP gather with the gray
area showing distribution of energy which cancels to give results in (e) showing the hyperbolic
and horizontal energy and (f) the application of NMO to the CSP gather. The above
discussion is purely kinematic.  Energy from a horizontal reflector is concentrated around the
apex of the hyperbola in Figure 7e.  For a dipping reflector, the energy is concentrated down
the limb of the hyperbola at an equivalent offset defined by the normal incidence ray.
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Example of planar reflections

A CSP gather combines a great deal more data than a CMP gather and is
considerably different.  As previously discussed, the CSP gather for an isolated
scatterpoint at x= 0 maps the entire 3-D (x, h, t) Cheop’s pyramid into a hyperbola in
(he, t) at x = 0.  Figure 7 illustrates the mapping for the case of an ideal horizontal
reflector.  The input traveltime surface is the hyperbolic sheet shown in Figure 7a.  A
CMP gather is a vertical slice at constant xcmp through the sheet as shown in 7b.  NMO
applied to 7b results in 7c.  The CSP mapping can be visualized (approximately) by
rotating each point on the sheet at constant time (as illustrated in Figure 6) to its
asymptotic equivalent offset (equation 10).  The resulting CSP gather is shown in 7d.
Energy in 7d is spread through the gray region, where band limited constructive and
destructive interference restricts most energy to the boundaries as shown in 7e.  NMO
applied to 7e results in 7f.  Stacking 7f will produce a strong event at the horizontal
reflector, but complete imaging requires the wavelet phase shaping of Kirchhoff
migration to account for NMO stretch and circular moveout of the horizontal event.

Natural anti-aliasing filters

Energy from a scatterpoint will map to a hyperbola on a CSP gather as illustrated
in Figure 8.  When binned, the data becomes smeared across a bin width δh which is
equivalent to convolving the input data at constant time with a spatial boxcar filter of
width δh.  This is the well known array effect which attenuates higher frequencies at
steeper dips (Sheriff and Geldart 1995 section 8.3.5).  This filter may appear to be a
detriment to the process, but is actually a benefit.  It has similar properties to a
temporal filter which attenuates spatially aliased frequencies as required for Kirchhoff
migration.  In effect, it provides a natural antialiasing filter for the data in a CSP
gather.

FIG. 8.  A hyperbolic event in a CSP gather with bins of width δh.  The CSP binning process
gathers data to the center of each bin resulting in a spatial and temporal smear over δh and
δt.
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EXAMPLES OF PROCESSING

A number of examples have been included to compare CSP gathers with CMP
gathers, and to illustrate the results that are obtained.  The first example is a
comparison of CSP and CMP gathers taken from a marine line, the second set of
examples come from a 2-D land line featuring a erosional channel, and the third set
uses a land 3-D dataset featuring a pinnacle reef.  Prior to EOM, the datasets have
been corrected to a flat datum using statics estimated by conventional processing.
Trace amplitudes in the CSP gathers have been adjusted to aid in visualization.

Marine example

The data featured in Figure 9 is extracted from a marine line and shows in (a) an
super CMP gather, and (b) a two sided CSP gather.  Half offsets for the super CMP
gather range from 200 to 1330 m. while the equivalent offsets for the CSP gather
range from -5000 m to 5000 m.  The fold in each offset bin of the super CMP gather
is one, achieved by summing eight adjacent CMP locations, while the average fold
across the CSP gather is approximately 15.

Since the water bottom is close to 3 seconds, the CSP gather was formed using
only the asymptotic equivalent offset heω enabling each input trace to be summed into
one offset bin.  Hyperbolic information is visible to larger offsets.  Dipping energy
may be observed at offsets beyond the range of the CMP gather, as identified by the
arrow in Figure 9b.

FIG. 9.  A marine 2-D example with (a) showing a CMP gather and (b) a CSP gather.  The
arrow identifies energy from a dipping reflector at the CSP location that is not imaged in the
CMP gather.
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The CSP gather also contains structural information as evident by the sloping
water bottom.  Much of the structural energy in this CSP gather is above the first

useful time Tα, and would be removed by the NMO process.  Energy above Tα is
aliased contributing to the noise patterns that are visible.

2-D land line featuring an erosional channel

Figure 10 contains three panels: a conventional CMP gather of traces sorted by
offset, a CMP gather with traces positioned at the actual source-receiver offset
(labeled CMPX), and a CSP gather.  The gathers are all located over the flank of a
sand filled erosional channel at T0 = 1.2 s.  Note the increased coverage and data at
larger offsets in the CSP gather.  Dipping energy of the channel may be observed on
the CSP gather at T = 1.3 s (see arrow), but is not evident on the CMP gather.

FIG. 10.  A channel sand example showing a CMP gather, a CMP gather with traces located
at the actual source-receiver offsets (CMPX), and a CSP gather.  Note the lack of coverage in
the CMPX gather, and the full coverage with increased offsets in the CSP gather.  The arrow
identifies the reflection from the dipping flank of the sand channel.

Velocity analysis semblance plots are shown in Figure 11 at the location of Figure
10 for (a) a super CMP gather and (b) a CSP gather.  The super CMP gather (not
shown) was formed from six CMP gathers to fill the missing offsets.  Note the
improved velocity resolution of the CSP gather for primaries and multiples.

Figure 12 compares (a) the stacked section of the channel with (b) a conventional
poststack migration and (c) an EOM image.  Figure 12c shows improved signal
coherence and we believe it is more interpretable than Figure 12b.

Figure 13 shows a 2-D line extracted from a 3-D dataset that contains a pinnacle
reef, with (a) the stacked section (b) a conventional prestack 3-D migration using
stacking velocities, and (c) the 3-D EOM image using velocities determined from the
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CSP gathers.  The EOM image shows improvements in coherence, detail, and spatial
resolution.

(a) (b)

FIG. 11.  Semblance plots for (a) a super CMP gather and (b) the CSP gather in Figure 10.
The super CMP gather was formed by compositing six CMP gathers around the CMP gather
in Figure 10.  Note the improved focusing on the CSP gather.

ADDITIONAL BENEFITS OF EQUIVALENT OFFSET MIGRATION

The equivalent offset method of prestack migration has a number of benefits that
have been demonstrated but not included in this paper.  The first of these benefits is
its ability to migrate data from an irregular surface (Geiger and Bancroft 1996).  Any
Kirchhoff migration may be modified to enable migration from topography by
including the velocity changes with elevation.  Migration from topography enables a
more accurate imaging and reduces static errors due to elevation corrections.

The ability of full prestack migration to focus and collect all the migratable energy,
increases the signal to noise ratio (SNR), especially at the higher frequencies.  This
allows additional spectral whitening after migration for improved bandwidth and
wavelet resolution.

The process of EOM may be applied to converted wave data.  Converted waves
have a P wave velocity from the source to the scatter point (or conversion point), and
an S wave velocity from the scatter point to the surface.  Conventional processing of
this P-SV data has been quite difficult, but Bancroft and Wang (1994) and Wang et al.
(1995) extended the concept of equivalent offset to include the appropriate P and S
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wave velocities.  The converted wave CSP gathers show hyperbolic moveout and are
imaged by an EOM process.

(a)

(b)

(c)

FIG. 12.  Comparison of (a) a stacked section, (b) poststack migration, and (c) an EOM for
the channel sand located at 1.2 s.
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(a)

(b)

(c)

FIG. 13.  A 2-D line extracted from a 3-D dataset showing a pinnacle reef with (a) the stacked
section, (b) a conventional prestack migration using stacking velocities and (c) the EOM using
velocities determined from the CSP gathers.

CONCLUSIONS

A robust method of prestack migration has been developed that is simpler and
much faster than conventional methods.  This is accomplished by using the equivalent
offset which converts the prestack double square root equation into a single square
root equation.  Energy from all input traces within the prestack migration aperture are
summed into the common scatter point (CSP) gather with offsets defined by the
equivalent offset.  No time shifting of the input data is required.  Antialias filtering,
scaling, and the phase-shifting filter are postponed until after the gather has been
formed for a significant savings in computation time.  Scattered energy in the CSP
gathers lies on hyperbolic paths, suitable for conventional velocity analysis, after
which the Kirchhoff migration steps of scaling, filtering, NMO, and stacking,
complete the prestack migration.  The formation of the CSP gathers provides
additional benefits by allowing additional scaling and or 2-D filtering before the final
migration step.

Advantages of the method include extremely fast processing times, accurate
velocity analysis, and simplified processing.  The process may be adapted for rugged
topography, or applied to converted wave processing.
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Inserting the method into a processing system is straight forward as only the CSP
gather algorithm needs to be developed.  Conventional processing tools provide the
remaining steps, similar to processing CMP gathers to a stacked section.
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APPENDIX 1.   DERIVATION OF THE EQUIVALENT OFFSET EQUATION (7)

Starting with equation (6), and using V as the migration velocity at T0, we get
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then by squaring both sides of the equation,
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expanding terms
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resorting,
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simplifying
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squaring
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eliminating terms, and resorting
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and finally, the denominator term is simplified with the total two way time T to get
the desired result.

h x h
xh

TVe
2 2 2

22= + − 



 (A9)


