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ABSTRACT

Nonstationary filtering techniques can be usedréatenonstationary deconvolution
operators designedirectly fromthe seismic datand applythem to thedata. Such
operatorscan becontinuouslytime-variant and have any desired amplitude phdse
spectra.The operatordesign usedime-variant Fourier or Burgspectra measured
directly from seismicdata, whichare smoothed, invertedand combined with a
minimum-phasespectrum, if desired. Thimethod of deconvolutionnamedtime-
variant spectral inversion (TVSI), approximately corrects the seismic data for the effects
of anelastic attenuation, frequency dispersion, and source signature. The result is a one-
dimensional nonstationary operation which extenti® range of stationary
deconvolution to a type of data-driven inverse-Q filter.

INTRODUCTION

As a wave propagates through amelasticmedium, some of its energy becomes
converted to heat by the internal friction of the medamd is irreversiblylost. The
amount of energy loss due to absorption is an intrinsic property afigdastic medium
and is commonly described by the dimensionless parameter, Q. The fapadity Q,
is also referred to athe internal friction or dissipatiofactor. Although there are
several different equationssed to describe Q (sdehnstorand Toksov, 1981, for a
description),the most common ighat Q is the ratio of thatored energy to the
dissipated energy in a wave:

Q=-2nE/AE, 1)

where E isthe elasticenergy and AE is the energyoss per cycle of thewave. The
constant Q theoryKjartansson, 1979%ostulatesghat Q is independent dfequency
over the range of seismic frequencies and experimental evidence supports this as well.

In practice it can be difficult to isolate the effects of anelastic attenuation described by
Q from the effects of other attenuatiechanisms. Transmissitosses,geometrical
spreading (spherical divergence), mode conversion, intrabed multiples and scattering of
acoustic energgll contribute to the degradation of seismic sigf&thoenberger and
Levin, 1974). Time-variant spectrainversion, as presented in thmaper cannot
distinguish the effects of Q from the effects of stratigraphic filtering.

Absorption is necessarily accompaniedrbyimum phase dispersion in a linear,
causal medium(Futterman, 1962). Thereforsjnce a causal pulse in lmear
absorbingmedium is minimunphase,its phase spectrum ilated to the log of its
amplitude spectrum by the Hilbert transform (Karl, 1989).

Absorption makes all seismic data nonstationary. “Nonstationary” is a gégrenal
used to describe a propethat is variantwith time or space. In contrasstationary
refers to a property that is invariant. In practical applicatithresfermnonstationary is
meaningful onlywhen used imeference to aneasure. Foexample a timeseries of
reflection coefficients fluctuates randomly corresponding to geology. On a srabd|
these fluctuations of the reflection coefficients could be describedoastationary,
however wemay choose to describthe reflectivity as stationary because large scale
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averages are not systematically changing. t€ha nonstationary cansed todescribe
a propertythat is time-varianand in the context othis work, the two words are
interchangeable. This paper describes a specific applicattome-aariant inverse or
deconvolution filter, based on the more general nonstationary filter theory.

The essence of Q theorytlsat anelastidossesare timeand frequency dependent
and therefore spectral attenuation and amplitude (time-domain) decay are two
manifestations of the same problem. Absorption causes a seismic pulse to broaden and
decrease in amplitude in thieme domain while losing spectral bandwidth in the
frequency domain. Figure 1 shows the effects of anelastic attenuation corresponding to
Q of 50, on aminimum phasewavelet versustraveltime. Conventional stationary
methods to improve resolution of seisndiata include deconvolutioand frequency-
independentgain. These methodsttempt toseparate time-domain effects from
frequency-domain effects artckat both problems individually. Gain is applied to
boost the amplitude of temporal events later times, andconventional stationary
deconvolution is designed to remowvee source signature and recover lost high
frequencies in an effort to restore resolution.

t(s)

Figure 1: A pulse traveling through a one-dimensional anelastic medium, Q=50, broadens
and its amplitude decreases with time.

The purpose oftime-variant spectrahversion (TVSI) is to correcfor time and
frequency-domain effects simultaneously, aocordance wittour understanding of
how earth processes created these effects idateeTVSI hasbeen developed from a
model of a wavelet propagatitigroughthe earthwhich suffersfrequency-dependent
attenuation andispersion along its travelpathVSI removes théime and frequency
domain effects of attenuation as well as the effectsafrce signature thereby
increasing resolution and boostitige amplitude of events Etertimes. In a lossless

medium (Q —» ) the propagating wavelet is time-invariant and the nonstationary

deconvolution (TVSI) process becomes stationary deconvolution and only removes the
source signature. TVSI can be considered as a data-driven inverse-Q filter.

Other inverse-Q filtering algorithms have been developtale (1982) proposes an
inverse-Q filter and deconvolutiazalled Q AdaptiveDeconvolution. This method is
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implementedwith a prediction errofilter and attempts to compensdt® attenuation,
dispersion, and source waveform. In addition, it yields an estimate of Q.

BACKGROUND

TVSI hasbeen developed as an extension of the basic concepts of the stationary
convolutional model and stationamyeconvolution.  Therefore, a review of the
stationary convolutional model and station&gurier domain deconvolution will be
presented in this sectionNext, todevelop TVSI from stationary deconvolution, a
technique is required which will decomposérace oroperator on a time-frequency
grid. Forthis purpose we usetene-variant spectruniTVS), which isintroduced to
explicitly describe how the spectrum of a trace or operator changes witlHOmTe .we
have this method of describing a nonstationary operator, we will briefly examine how it
may be applied to the data.

In the stationary convolutional model, a seismic trace is composibg oéflectivity
of the earth, r(t), the near surface multiples, m(t), tiecdsource wavelet, w(t).These
factors arerelatedtogether, inthe timedomain, through convolution to produce the
seismic trace, s(t):

s(t) = r(t)* m(t) * w(t). 2)

In the frequencydomain, convolutiorbecomes multiplicatiomnd the above equation
becomes:

S =REOMEW(). 3)

Fourier or frequency domain stationary deconvolution is basdbeoconvolutional
model and deconvolvethe trace by exploiting the similarities between pever
spectrum of the trace and thewer spectrum athe wavelet. The power spectrum of
the trace is computed and smoothed to obtain an estimate pdwes spectrum of the
wavelet. Since a lineacausal pulse in amabsorbingmedium is minimumphase
(Futterman, 1962), the minimum phase spectrum of the wavelet can be calculated as the
Hilbert transform ofthe logarithm of the amplitudspectrum. The trace is then
deconvolved by dividing the trace by the estimated amplitude and phase spectrum of the
wavelet.

To develop TVSI, a tool is needed @égaminehow the spectrum of &acechanges
with time. A time-variant spectrum, TVS, is calculated from the idpta by applying
a window tothe inputtrace and calculating theordinary Fourier spectrum of the
windowed data, as shown in FigureThe window isthen moved successivetiown
the trace and thEourier spectrum isalculatedfor eachnew position ofthe window.
Typically there is an overlap of 80 to 90 percent between neighbemdpws. (This
technique is known as the spectrogram or short time Fourier transform (Cohen, 1995)).
A TVS can be displayed asgrey level plot or a3-dimensional surfacelot, with
frequency as the horizontal coordinate &ne as the verticatoordinate. Irthe grey
level plots, black representdarge positivenumbers andight grey representssmall
positive numbers. Eachrow of the plotcorresponds tthe completespectrum of the
windowed input data at a specifitme. In general, §VS is complex valued and
contains bothamplitude andphase information. The amplitude (magnitude) of the
TVS, will be referred to as [TVS].
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Figure 2: A window is applied to a seismic trace, as in step A, and the ordinary Fourier
spectrum of the windowed data is calculated (step B). This spectrum then becomes a row of
the resulting nonstationary spectrum, C. The window is then moved successively down the
trace, with a large degree of overlap, and the spectrum is calculated at each new position of
the window to create the nonstationary spectrum.

The relative detail in time and frequency of the TVS is related tavihéow size as
governed by the uncertainty principle. The uncertainty principle, which may be familiar
from quantum mechanics, states:

AtAf=constant, 4)

whereAt is thewindow length intime and Af is the length of the spectrum of the
window in frequency. The uncertainty principlethe relationship between theadths
of a Fourier transform pair in their respective domains. For example, a lvaxciaw

in the time domain will becomesanc function inthe frequency domain and tledth

of each is interrelated as determined by equation 4.

A seismic trace analyzed in the frequency domain, is given by:

G(f) = [s(t)w(t) €™ dt = [ S(F) W(F-f')dF, (5)

where s(t) is the seismic trace, &) isits corresponding frequency spectrum. The
window, intime, is denoted bwv(t), its frequency spectrum M/ (f). G(f) is the

20-4 CREWES Research Report — Volume 9 (1997)



Time variant spectral inversion

spectrum of thevindowed data. Convolution is a smoothing operatortheoefore

S(f) is smoothed othe scale ofAf, and the extent athis smoothing increases A$
becomes smaller. Therefore, some consideration is required when chooasnipa
length parameter as it will affect the frequency resolution of the resulting TVS.

Time-variant spectra can be applied to seismic dateoastationary operators in a
manner similar to the application of stationaperators. Astationary wavelet can be
applied to a reflectivity via Fourier transform techniques:

S(f) = W(f)[r(t)e 2t (6)

where S(f) is the stationary spectrum of a trace, W esstationanforward operator
(wavelet), and r(t) is the reflectivity in thiene domain. The reflectivity in theFourier
domain is computed from the trace using the inverse operator:

R(f) = W L(f)ys(tye 2"t @)

where R(f) isthe reflectivity in theFourier domain, W(f) is the inverse of the
spectrum of thewavelet, and s(t) ishe trace in the time&lomain. The forward
application of a nonstationary operator,(¥) can be applied to the reflectivity in a
similar manner, through the following formula (Margrave, 1997):

S(F) = fr(Wp (t,Fe 2t (8)

By hypothesis, forquasi-stationaryprocessesthe inverse operator W(t,f) can be
applied to the input trace by:

R(f) = [S()W, 7 (t, F)e M at ©)

NONSTATIONARY SPECTRAL MODEL

Implicit in the creation of a spectralverse operator is a modeiich relates the
spectrum of the inputrace tothose effects which wevould like to remove. The
stationary convolutional model as described in equa®rcan be extended into the
nonstationary realm to yield a model of the TVS, S(t,f), of an attenuated, nonstationary
seismic trace:

S(t,0) = R(LHM(L,HW()e ™ LDIIOLD (10)

where R(t,f) isthe nonstationary TVS of the earth’s reflectivitynction, which we
assume to be statistically white in f and stationary over largescales. M(t,f) is the
nonstationary TVS describingultiple reflections, W(f) isthe stationary spectrum of

the source signature including stationary near surftects, a(t,f) is a generalized
nonstationary attenuation function, apé,f) is the phase associated with attenuation.

If a=1/Q(t), the exponential attenuation becomes the constant Q model of attenuation.
Equation (10) can also be written in terms ofthe amplitude spectrum oéach
component:

| S0 = R(6H || M) || WE) [ e ™ D, (11)

Note that if the timedependence of equatigii0) vanishesthen the stationary
convolutional model, equation (3), results.
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From equation(11) wecan see the amplitude of tiierward operator, [W,f)
acting on the reflectivity is modeled as:

| Wi (4,F) [F ML T) | W(F) | e T2 (DN (12)

The forward operator containte attenuation andource effects and it physically
represents avavelet propagatinghroughthe earth and attenuatingith time. The
forward operatorcan be estimated by attempting to eliminate réfeectivity, R(t,f),
from equation (11). As in stationary Fourier domain deconvolution we agbainie
reflectivity effects can be removed through smoothing the |TVS| of the seismic trace. It
is notclearwhat the smoothing does to |M(t,f)]. We assuthat the general trend of
the TVS of the seismic trace duie to propagation effects and souveaveform, and
that the detail in the TVS is due to reflectivity. The forward operator céeftkaes zero
phase or coupled with minimum phase spectrum, which seemeasonable as we
expect the earth to have minimum phase attenuative processes. The forward operator is
then inverted and applied to the data using equation (9).

The assumptions that have been made to simplify the spectral inversion finoicess
the TVSI procedure. We assunae-dimensional wave propagation and therefore
require spherical divergence corrections to be apgreat to TVSI. Also, aswith
stationary deconvolution, TVSI cannatrrectfor all multiple effects, although it can
potentially handle awider class of multiples than stationadeconvolution. For
simplicity, we assume that the attenuation depends only on tiraeednd not raypath.
The minimum phase assumption of a linear , causal earth is a simplifiadtticim can
lead to phase complications.The phase computations ithe TVSI algorithm are
handled with a digital Hilbert transform. Since minimum-phase attenuation is created in
the earth through analog means, removal of this phase through digital means is inexact.

METHOD

Thefirst step ofthe TVSI algorithm is to apply an approximate and deterministic
gain to the input trace. This is done to prevent aliasing of the steep decay whdace
the inputtrace iswindowed duringthe calculation of theTVS. The gain is a
computational convenience and is removed ftbenresultant trace after theversion
process. Gaining the trace adjutsts amplitude of the trace exponentiallytime and
the |TVS| of the gained trace is given by:

| St =1 RED Mt | W(h) | eV, (13)
whereA is a gain constant.

We have investigated two methods to attempt to eliminate reflectivity therabove
|TVS| to obtain theforward operator. The first method is simple-smoothing and the
second is residual-smoothing. In the simple smoothing methedTVS| of the input
trace issmoothed directly in bothme and frequency. Andeal smootherB(t,f) will
have the property:

|R(tT) FIR(EE) [** B(t,f) =1, (14)

where |R(t,f) | is the |TVS| of thesmoothed reflection coefficient8(t,f) is an
appropriatesmootherand ** denotes two-dimensional convolution. This smoother is
then applied to equation (11) to reveal the forward operator:
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|Wp(tf) |2 BOLF)* * [ S(LF) = BEL T * *(IRAH) M) ITW(F) e/ 9N (45

|Wp (tF) [RIM(LT) [ W(F) | e/ QA (16)

We note that equatioil6) does not followmathematically, but is an assumption
consistent with standard practice in stationary deconvolution.

A smoother applied to the |[TVS| of equation (11) , as described in equation (14), will
act on themultiples, M(t,f), the source waveform, W(f)and the attenuation/gain

surface, ™™, as well as the reflection coefficients. The source waveform is assumed
to be time-invariant, so dime smoother should notffect it. However, the
attenuation/gain surface is very steep, as it is exponential in both time and frequency. A
smoother applied to this surface will reduce its slope. Therefore tvbdmal filter is
inverted andapplied,the exponential decasurface will not becompletely removed

from the input trace.

To address the smoothing issues mentioned above and reduce the bias introduced by
smoothing the exponential-decay/gaisurface, a second smoothingethod was
devised as aralternative to thesimple-smoothing methodlhe residual-smoothing
method explicitly models the attenuation as an exponesuidhce in frequency and
time whose shape is determined by the quality factor, Q (assumedhe benstant Q

model). Assuming that an estimate of@,is availableand settingnultiple effects to
unity. The attenuation/gaisurfacecan be removed approximatdipm the |TVS| of
equation (13) to produce a residual spectrum:

|0(t,F) [= R F) [ W(F) e TH/ QAL / QAL a7

-1, A1
|p(t,f) FIR( ) [[W(F) [e ™R TR ) =|R(t, ) [ W(F) |. (18)

The residualspectrum, d(t,f)|, is mostly free from attenuation effects and is
dominated by the spectra of the source signature and reflectiMig.general trend of
the residual spectrum is thought to be due tosthece signature artte detail in the
spectrum is fromthe reflectivity. This residual spectrum is then smoothieb-
dimensionally withtime and frequency smoothers temove the reflectivityfrom the
residual spectrum:

|p(t.F) |= B(LF)* * [ p(t, f) = B(L, ) * * (I R(LF) [T W(F) D, (19)
| p(tF) =l W(T) |, (20)

where|p(t,f)| is the |TVS| of the smoothed residual spectrp(bf)| is the [TVS| of
the unsmoothed residual, arig{t,f) is anappropriatesmoother. Equation(20) also
follows by assumption and not strictly mathematically. The reflectivity coefficients are
assumed to be white artde smoother satisfies equatigt3). In this manner, the
reflectivity effects can be removed from the |TVS| without overly biasing the attenuation
effects. Figure 3 illustrates the TVSI process up to this poirghbyingthe |TVS| of
the ungained input trace, gained input trace and the smoothed residual spectrum.
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Figure 3: The |TVS| of the input trace is shown in 3A. The trace is initially gained and the
|TVS| of the gained input trace is shown in 3B. The |TVS| of an attenuation/gain surface can
be calculated and divided from the |TVS| of the gained input trace. This residual [TVS] is then
smoothed, and the result is shown as 3D.

After the smoothingprocess,the attenuation spectrum restored tothe smoothed
residual spectrum to yield an estimate of the propagating wavelet with gain applied:

| W, (6F) =l p(t,F) | 7Tt/ QM

(21)

The operator may be left as zgroase or combined withrainimum phase spectrum.

The minimum phase spectrum is calculated as prescribed from the following equation:
Qrin(t,H)=H(In(W(t,f)+n)), (22)

where @, is the nonstationaryninimum phase spectrum, H is @e-dimensional
Hilbert transform over frequency at constant tim?(tw is the amplitude spectrum of
the forward operator, and n is a small amount of noise.

The |TVS| of thepropagating wavelet can be inverted to produce the inverse
operator:
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| Wp(tf) ™= p(t F) | e/ QA+t (23)

The forward operator ,|W,f)|‘1, is then applied to the trace to remakie, attenuation,
source signature and imposed gain to giveestimate of theeflectivity. Figure 4
shows the |TVS] of the propagating waveleg, |TVS| of theoropagating wavelet with
gain applied, and the |TVS] of the inverse operator.

[TVS| propagating wavelet [TVS| of propagating wavelet with gai

0 v T 1 0

time (s)

20" § 2.0
0 20 40 60 80 100 © 20 40 60 80 100

frequency (Hz) —»

0 [TVS| of inverse operator
I

1.0}

Figure 4: The |TVS| of the propagating wavelet is shown in 4A. The propagating wavelet with
gain applied (4B), is then inverted to form the |TVS| of the inverse operator, 4C.

RESULTS

Results from applying TVSI to a noise-free amdiltiple-free synthetic will be
presented. The synthetic trace was created by applying a Q@i#@6) superimposed
with a minimum-phase wavelet to a reflectivityme series. Firstthe results from the
four possible versions afVSI (simple smoothing and residual-smoothing with both
zero and minimum-phase operatoee compared to theesults from stationary
deconvolution algorithms. Nexthe smoothing parametei@e examined to see how
they affect the outputace of TVSI. Finally, the residual-smoothingersion istested
for its sensitivity to errors in the estimate of Q.

Figure 5 showgheresults fromall versions ofTVSI (minimum-phase and zero-
phase,simple-smoothing and residual-smoothing) and comptres to the input
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trace, bandlimited reflectivity, andresults from time-variant spectral whitening
(TVSW), gain and Wienedeconvolution, and gain and stationary frequedognain
deconvolution. Time variant spectral whitening (Yilmaz1987) is a zero-phase
technigue to compensate seismic dia attenuation. The bandlimited reflectivity
representshe idealoutput trace. Figures 6 and 7 displag |TVS| of theraces in
figure 5.
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Figure 5: A comparison of various deconvolution techniques. The four combinations of TVSI
are displayed next to each other. The operators in the simple-smoothing version were
smoothed with 10 Hz frequency smoothers and 0.1 second time smoothers. The operators
in the residual-smoothing version were smoothed with 10 Hz frequency smoothers and 1.5
second time smoothers. In TVSI, a stabilization factor of 0.001 (the fraction of the maximum
value of the matrix) was added before inversion of the attenuation/gain surface and before
inversion of the operator. The Wiener operator was designed on the first 0.3 seconds of the
input trace and 50 autocorrelation lags were used in the operator design. The smoother in
the stationary frequency domain deconvolution was 30 points in length. Both stationary
deconvolution methods had a stabilization factor of 0.0001 (the fraction of the zero lag of the
autocorrelation) added as white noise before inversion of the operator.
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Figure 6: A comparison of the |TVS| of the output trace from the residual-smoothing and the
simple-smoothing method, in both minimum and zero phase.
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Figure 7: A comparison of the |TVS| of the results from the combination of gain and Wiener
deconvolution, TVSW, and gain and stationary frequency domain deconvolution.
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input trace min.-phase simple-smoothing min.-phase residual-smoothing

time shift (s)
time shift (s)
time shift (s)

time (s) time (s) . - . time (s)

zero-phase simple-smoothing  zero-phase residual-smoot hing Wiener deconvolution

time shift (s)
time shift (s)
time shift (s)

time (s) time (s) time (s)
Figure 8: A comparison of the time shift of events for zero and minimum-phase residual-
smoothing methods, simple-smoothing methods and gain and Wiener deconvolution.
Segments of the traces (0.2 seconds in length) were correlated to corresponding segments
of the bandlimited reflectivity. The solid line shows the time shift associated with the maximum
correlation of the deconvolution method and the dotted line shows the time shift associated
with the maximum correlation of the input trace. The ‘+' symbol indicates the values of the
maximum correlation at the corresponding time. The value of the maximum correlation value
can be read off the y-axis, however it has no physical units. A positive shift in time indicates
that events has been advanced in relation to the bandlimited reflectivity. The value of the

maximum correlation indicates how strongly the trace correlated with the bandlimited
reflectivity.
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Figure 9: The bands in the |TVS| of the bandlimited reflectivity correspond to features in the
trace.

As can be seen from figure 5, the output trdoa® all versions ofTVSI show an
increase in amplitude of events at later times as compared to the input trace. In addition
to the amplitudeorrectionsthe |TVS| of theoutput traces from TVSI (figure 6) also
show that much of theébandwidth atiater timeshasbeenrecovered. The residual-
smoothing process seemmre effective than simple-smoothimgnd, ascan be seen
from figure 5, its output seems toatch the reflectivity better than thesult from
simple-smoothing. The improvement in performance of the residual-smoothing method
over the simple-smoothing method is related directly to the removal of the exponential
attenuation surface before smoothing.

We havefound that deconvolutiorbased onthe zero-phase residual-smoothing
version of TVSI yields results similar to that of TVSW, as can be seen in figure 5. The
last two traces of figure 5 are a result of a combination of gain Widner
deconvolution and gain and stationary frequency domain deconvolution. Both of these
traces still exhibit reflectionsvhich broaden in timeindicating that the effects of
attenuation have not been fulgmoved. The |TVS| ofboth combinations of gain and
stationary deconvolution (figure 7) exhibit a strong loss of bandwidth with time.

The minimum-phase output both versions offTVSI are more favorable than the
zero-phase outputs. The minimum-phase option helps to reduce the time shift of events
in the inputtrace. Thistime shift is associated with dispersion atite embedded
minimum-phase wavelet. The advantage of the minimum-pleaséts oveithe zero-
phase results are particularly obvioughe |TVS| offigure 6. The light-colored band
on the |TVS| of the bandlimited reflectivity at approximat@l seconds inear and
corresponds to features time trace, as is shown iiigure 9. The|TVS| of the input
trace has a corresponding light-colokezhd, howevebetween 0 and 30 Hz the band
occurs at a slightlyater timethan on the bandlimited reflectivity and it is difficult to
discern after 3(Hz. The |TVS| of theminimum-phase resultshow that the light
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colored band is linear and at approximately the sames as théband onthe |TVS| of
the reflectivity. The|TVS| of thezero-phase resultshows ashift in the band at
approximately 30 Hz.The position ofthe band between 0 and 30 Hnrresponds to
the position of the section of thand which is visible othe |TVS| of thenput trace.
This shift in the band could be due to dispersion preseiieimputtracewhich is not
corrected by the zero-phasperator. The linear featur@ccurs atapproximately 0.8
seconds inthe |TVS| of the gairand Wienerdeconvolution, gain and stationary
frequency domain deconvolution, and TVSW. It is not strong and contihikeuke
band on the bandlimited reflectivity.

Although eachrow of the ‘zero-phase’ operator is zepghase, such operatovll
generally change both the amplitude and phase of a trace when applied through equation
(9). For more information, refer to Margrave (1997).

Figure 8 plots the maximum correlation and associated time shifts between segments
of a particular outputraceand the bandlimited reflectivity. Theegments were 0.2
seconds iflength and overlappeelach other by).1 seconds. Asxpectedthe input
trace has atime advancement due tdispersion andhe embedded minimum-phase
wavelet. The maximum correlation values are low indicatipga match between the
input trace and the bandlimited reflectivity. A combination of gain awdener
deconvolution has reduced thesdwfts, particularly in the early part of theace. The
maximum correlatiorvalues decrease witime indicating that theoperator could not
correctfor the nonstationarity of the inpttace. The zero-phase TVSI methods have
slightly changed thg@hase ofthe inputtrace, for reasons discussed abovBoth
minimum-phase TVSI methods have produced a reasonable correctiontiofetlsaift
and the corresponding maximum correlation values are relatively high.

TVSI asks for several parametemputs from the user. The user-specified
parameters that affect the results most significantly are the length of the frequency and
time smoothers. Figures 10 to 15 shows hthe smoother length influences the
results of minimum-phase simple-smoothing and minimum-phase residual-smoothing.
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Figure 10: The length of the time and frequency smoothers were varied to determine how
they affected the output from the minimum-phase simple-smoothing version of TVSI. The
length of the time smoother was held constant at 0.5 seconds while the length of the
frequency smoother, Af, was changed from 5 to 30 Hz. The length of the frequency
smoother was held constant at 10 Hz while the length of the time smoother, At, was varied
from 0.05 to 1.5 seconds.
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Figure 11: The |TVS]| of the resultant traces from the frequency smoother tests of the
minimum-phase simple-smoothing method. The length of the time smoother was held
constant at 0.5 seconds.
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Figure 12: The |TVS| of the resultant traces from the time smoother tests of the minimum-
phase simple-smoothing method. The frequency smoother was held constant at a length of
10 Hz.

The simple-smoothing method of TVSeems to performs best when used with
small time and frequency smoothers. Long smootherstheasxponential attenuation
surface and distort the operator. The |TVS| displayed in figure 11 and 12 show how the
high frequenciesre lost, especially at latetimes, with longertime and frequency
smoothers. From equation 4, wan sedhat the length of th&equency smoother in
the frequency domain is inversely proportional to its length intithe domain. The
frequency smoother therefore must be small enough to allow its time-domain equivalent
to encompass the majority of the wavelet. The wavelet is commonly @R2oseconds
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in length, so a 5 Hz smoother would completely encompa3sédrefore, a frequency
smoother of length 10 Hz and a time smoother of length 0.5 seconds seems reasonable.
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Figure 13: The length of the time and frequency smoothers were varied to determine how
they affected the output from the minimum-phase residual-smoothing version of TVSI. The
length of the time smoother was held constant at 1.5 seconds while the length of the
frequency smoother, Af, was changed from 5 to 30 Hz. The length of the frequency
smoother was held constant at 10 Hz while the length of the time smoother, At, was varied
from 0.1 to 2.0 seconds.
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Figure 14: The |TVS| of the output traces from the frequency smoother tests for the minimum-

phase residual-smoothing method. The length of the time smoother was held constant at 1.5
seconds.
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15: The |TVS| of the output traces from the time smoother tests for the minimum-phase
residual-smoothing method. The length of the frequency smoother was held constant at 10
Hz.

Based orthe traces ofigures 13 andhe |TVS| infigures 14 and 15, a longme
smoother and a short frequency smootbeem reasonabl®r the minimum-phase
residual-smoothing method.The residual-smoothing method models the residual
spectrum to be smoothed, as only containing the source waveform and reflectivity. The
source waveform is stationary in time, however it is frequency dependent. Therefore,
time smoothers should not adversedjfect the spectrum of thsource waveform.
However, the frequencysmoothers should bkept short, so as not to distort this
spectrum. As witlthe simple-smoothingnethod,the frequencysmoothers must be
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short enough in the frequency domthat they will belong enough to encompass the
entire wavelet in the time domain.

The TVSI operator is determindébm the dataand not designeeéxplicitly from a
value of Q. The Q estimate is onlged toremove an approximate attenuation surface
to form the residual spectrum, and thttenuation surface is replaced atte residual
spectrum has been smoothed. This suggests that me$be relatively insensitive to
errors inthe estimate of Q. Q is difficult to estimate practice, and beingble to
remove attenuation without an exact value olv@uld be advantageous. A noise-free
and multiple-free synthetitacehasbeen attenuatedith a Q of 100. Thidrace has
been input into TVSI with varying erroneous values of Q, as well as the coataet
to determine how accurate a Q estimate must be to filter the trace satisfactorily.
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Figure 16: The minimum-phase residual-smoothing method was tested for its sensitivity to
errors in the value of Q. The input trace was created with a Q value of 100. Then the trace was
deconvolved with minimum-phase residual-smoothing TVSI using various values of Q.
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Figure 17: The |[TVS| of the output traces from the Q-sensitivity tests in the minimum-phase
residual-smoothing method.

Estimating Q to be of a higher value than it actual)ystill yields reasonableesults
from TVSI (figures 16 and 17). The attenuation surface ieniitely removed before
smoothing when the Q estimate is higher than the actual value. The extreme case of this
would be not removing angart of the attenuatiosurface which is analogous to the
simple-smoothing versionTVSI is also forgiving about estimating Q to be lowleain
the actual value. Errors in tlestimate of Q will commonly falvithin the range of Q
values that the TVSI algorithm is relatively insensitive towards.

CREWES Research Report — Volume 9 (1997) 20-23



Schoepp and Margrave

CONCLUSIONS

A nonstationary Fourier-domain deconvoluti@utine, TVSI, hadeen developed
as an extension of stationary Fourier domain deconvolutiamsds adata-dependent
operator derived fronthe time-variant amplitude spectrum of the ingtdce to
approximately corrector the effects of attenuatiomlispersion,multiple effects and
source signature. Two versionstbé deconvolution method are available, and they
differ in the way the nonstationary spectrum of the inmldta issmoothed in the
operator design stag&he first version, the simple-smoothingmethod, directly
smootheghe |TVS| of thenput trace. It yields a resutimilar to that of time-variant
spectral whiteningTVSW), however with two differences.The operator can be
minimum phase. The alternateversion, the residual-smoothingiethod, is aype of
data-driven inverse-Q filterThe residual-smoothingrocess removes aestimated
exponential attenuation trend frotime timevariant amplitude spectrum of the input
trace, smoothethe residual spectrum anmdstoresthe exponential attenuatidnend.
The resulting amplitudspectrum, fromeither version, can then be coupledith a
minimum-phase spectrum or left as zero phase before being inverted to form the inverse
operator. The inverse operator is then applietthéatraceusing nonstationarfjltering
techniques. TVSI has an advantage over other inverse-Q filtering techniques. It seems
to be robust withrespect to the estimate of &d the operator isontinuouslytime
variant. As well, TVSI canalso handle waveform removal awertain classes of
multiples.
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