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Investigating the randomness assumption in wavelet
estimation
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ABSTRACT

In the February 1991 issue GEOPHYSICS Anton Ziolkowski gives a
scathing criticism of statistical wavelet estimation methods. Among other points,
Ziolkowski questions the validity of the randomness assumption. That is, when
trying to estimate a wavelet by statistical means, it is common place to assume that
the seismic reflectivity sequence is a random signal so that the wavelet
autocorrelation can be obtained from the trace autocorrelation. In examining the
randomness assumption, we shall present some very preliminary results concerning
these statistical methods and their assumption of randomness. We will discuss the
methods used and analyze their results. Finally, we shall indicate some directions
that will be taken in the future.

INTRODUCTION

Statistical wavelet estimation methods usually assume that the reflectivity is a
random uncorrelated signal (that is, the reflectivity has an autocorrelation which
approximates a delta function) and this effectively means that the seismic trace
autocorrelation is approximately equal to the seismic wavelet autocorrelation,

X(2) X" (2) =W(2)W’ (2). Consider the following figure.

(b) Zero phase equivalent of (a).
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(c) Full inverse deconvolution of (a). (d) Full inverse deconvolution of (b).

Fig. 1: The effect of deconvolution on known minimum-phase and zero-phase wavelets (from
B. Russell, SEG inversion course notes).

Figure 1 shows that if the wavelet is known, then deconvolution will give consistently
good results since the application of a Wiener deconvolution filter produces a good
approximation to a bandpassed delta function. The deconvolution of data is only
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effective if the input wavelet is a reasonable approximation to the true wavelet. To
establish the best, and most effective, means of wavelet extraction is the key to
creating a more interpretable, high resolution, seismic section. This is precisely why
we must investigate the assumptions upon which our commonly used statistical
methods are based. The random reflectivity assumption allows one to estimate the
wavelet's autocorrelation, and consequently the amplitude spectrum, from the trace
autocorrelation. Hence, given an input seismic trace, it is possible to estimate the
wavelet needed for deconvolution. For the synthetic data that is used in this study, a
comparison of the model wavelet and wavelet estimates obtained by methods that use
the randomness assumption will be made.

METHODOLOGY

Two synthetic seismic sections are generated for use in this investigation. We
first look at the validity of the randomness assumption with a primaries only section
derived from a well in central Alberta and then with a section that also has multiples,
also derived from the same well. The use of synthetic data is done because we know
what the wavelet used to generate the section is and, therefore, can make meaningful
comparisons with the statistical estimates. For this experiment, we consider the
wavelet estimates that are created via the Hilbert transform method and the Wiener-
Levinson double inverse method. Both of these methods use the assumption of
reflectivity randomness to estimate minimum phase wavelets. Detailed descriptions
of the methods are given by White and O’Brien (1974), Claerbout (1976), and Lines
and Ulrych (1977).

The Wiener-Levinson double inverse method can use the wavelet autocorrelation
rather than the wavelet itself. If the desired output is set to a spike at zero delay
(which will be the optimum only if the wavelet is minimum phase), then the inverse
filter for a minimum phase wavelet is obtained. To obtain the wavelet estimate,
another Wiener filter is applied to invert the inverse filter and thereby estimating the
minimum phase wavelet from its autocorrelation.

The Hilbert transform method (sometimes called the Kolmogorov method) also
uses the autocorrelation and the amplitude spectrum which can be derived from this
autocorrelation. If a wavelet is minimum phase, then its phase spectrum can be
uniquely derived from its amplitude spectrum by taking the Hilbert transform of the
log amplitude spectrum (Robinson, 1967).

These estimates are computed by FORTRAN codes and their autocorrelations are
compared to the trace autocorrelation. In addition, we will consider how these
wavelet estimates compare to the actual wavelet that is used to generate these
sections. The input traces are both 10 traces long with 261 samples per trace. The
actual wavelet is a single trace with 44 samples. We use the conventional wisdom of
choosing a filter length that is equal to the wavelet length. This results in estimated
wavelets that are also a single trace with 44 samples. To prevent computational
blowup, a prewhitening value of 1.01 is used. After the generation of these estimates,
autocorrelations are made of the input trace and wavelet estimates. Since our
estimates are just a single trace with 44 samples, we use a single trace from our input
that is 44 samples long when we do these autocorrelations. Again, FORTRAN is
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used to create these sequences. To understand the goodness of these estimation
methods, visual considerations are used. That is to say, we will qualitatively evaluate
our estimates based on a visual comparison with the known wavelet.

RESULTS AND DISCUSSIONS

Some very preliminary results will now be presented and discussed. Figure 2,
shown below, displays the synthetic trace that consists of reflections from primaries
only. It is generated by the convolution of a reflectivity sequence and the wavelet
that we are trying to estimate.
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Fig. 2: A synthetic seismogram with only primary reflections.

The trace autocorrelation, in figure 3, shows a progressive decrease in amplitude,
while figures 4 and 5 show the actual wavelet and its autocorrelation. Note the close
similarities between figure 3 and figure 5. It is this wavelet and this autocorrelation
that we wish to reasonably estimate so that an accurate reflectivity sequence can be
recovered.
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Fig. 3: The autocorrelation of a single trace from the input data.
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Fig. 4: The actual wavelet used to generate the synthetic sections.
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Fig. 5: The autocorrelation of the actual wavelet.

According to the theory, we expect that the wavelet estimates will be fairly good.
This is because there is no inherent periodicity since there are no multiples in the
data. Shown in figures 6 and 7 are the autocorrelations of the estimated wavelets.

Fig. 6: The autocorrelation of the Hilbert transform wavelet.
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Fig. 7: The autocorrelation of the Wiener-Levinson double inverse wavelet.

From a qualitative standpoint, these images show a remarkable similarity to the plot
in figure 3. Closer inspection reveals that the Hilbert transform estimate has a better
correlation with input than the Wiener-Levinson estimate. We see that the Hilbert
transform wavelet estimate has almost the same amount of energy as the trace. With
such a close correlation, it can be said that there is random reflectivity in the input

synthetic seismic trace since the approximatiofz) X (z) =W(2)W (z holds true.

The Wiener-Levinson double inverse wavelet estimate also seems to be a close
approximation to the trace autocorrelation and the same can be said in this case as
well. The analysis shows that there is a good similarity between the autocorrelation
of the trace and the autocorrelations of the estimates. As shown in the introduction,
we need these wavelet estimates to be good approximations to the actual wavelet
because then the deconvolution of the data to obtain a reflectivity sequence will be
valid. In that vain, consider the following two plots.
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Fig. 9: Hilbert transform wavelet estimate for the primaries only data.
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Fig. 10: Wiener-Levinson double inverse wavelet estimate for the primaries only data.

We can see that these estimates are fairly good reproductions of the actual wavelet
that is displayed in figure 4.

From here, we investigate the next logical scenario of a synthetic seismic trace that
includes primaries and multiples. The plot of such a seismic trace is displayed in
figure 11.
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Fig. 11: A synthetic seismic trace with primaries and multiples.
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Again, we consider just a single trace and compute its autocorrelation. We see this
trace in figure 12 and note that it too has decreasing amplitudes as sample number
increases. Also note that at the end of this trace, there seems to the onset of a doublet.
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Fig. 12: The autocorrelation of a single trace from input data.

In the same manner as above, we consider the plots in figures 13 and 14. The Hilbert
transform data shows a good correlation but there are some noticeable differences.
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Meanwhile, there seems to be quite a noticeable difference between the input trace
autocorrelation and the Weiner-Levinson double inverse autocorrelation.
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Fig. 13: The autocorrelation of the Hilbert transform wavelet.
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Fig. 14: The autocorrelation of the Wiener-Levinson double inverse wavelet.

As before, the Hilbert estimate is better than the Wiener-Levinson one. Again, we
compare the wavelet estimates for this data to the actual wavelet that is shown in
figure 4.
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Fig. 15: Hilbert transform wavelet estimate for data with multiples.
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Fig. 16: Wiener-Levinson double inverse wavelet estimate for data with multiples.

Note that these estimates are not quite as good as those before. This is to be expected
because the data being considered now is not a totally random signal since it contains
multiples and these have an inherent periodicity to them.
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CONCLUSIONS

The preceding results give some very mixed impressions regarding the
randomness of the reflectivity sequence. As expected, both of these methods give
better results for the primaries only trace since there are no periodic multiple events
involved. Certainly, further and a more detailed investigation will be pursued. Also
to be investigated will be how these statistical methods work on real data. To that
end, the validity of the assumption can be tested by using sonic and density logs to
compute a reflectivity series for a geological area and then using this information to
measure the goodness of the estimates. Through all of the investigations, it is
expected that the randomness assumption for a reflectivity sequence will be closely
tied to the lithology of an area. That is to say, if an exploration area has periodic
properties, then its reflectivity will not have randomness.
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