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On incorporating time-lapse seismic survey data into
automatic history matching of reservoir simulations

Laurence R. Bentley

ABSTRACT

Porosity, permeability and other parameters must be specified at every node within
a petroleum reservoir simulator. The parameters are developed from sparse and noisy
data so that they are not known exactly. After preliminary assignment of porosity and
permeability data, simulators are run in the forward mode, but they can seldom match
the observed production history adequately. Consequently, a “history matching” step
is required in which porosity, permeability and other parameters are adjusted until the
model predictions match the production history to a sufficient degree. In “automatic
history matching”, an objective function is formed by squaring and weighting the
difference between observations and the computed predictions. In addition, terms are
often added to the objective function to penalize departures from original parameter
estimates. This objective function is then minimized with respect to the parameters
using solution techniques such as the Marquardt  method.

Time-lapse seismic surveys produce images at different times in a reservoir’s
history. The seismic response of a reservoir may change due to changes in pressure,
fluid saturation and temperature. Given appropriate rock physics models, the output
of the reservoir simulator can be used to predict the change in seismic response. The
difference between the predicted change in seismic response and the observed change
in seismic response forms another set of residuals. These residuals are squared,
weighted and added to the objective function.

INTRODUCTION

Reservoir simulators are used to approximately solve the mathematical equations
that describe the physics of flow of fluids within petroleum reservoirs. The simulators
calculate changes in pressure and saturation within reservoirs due to production and
the injection of fluids during secondary recovery operations. Reservoir simulators are
used to forecast production, assess risk and test conceptual models.

The mathematical models used in reservoir simulators require the specification of
reservoir parameters at all locations within the reservoir. In particular, the intrinsic
permeability and the porosity need to be specified. The values of these attributes are
extremely heterogeneous in geologic formations, and they exert strong control on the
flow and storage characteristics of the reservoir. In practice, these parameters are
known approximately, because hard data from wells are sparse, correlation to densely
spaced seismic data is typically weak and differences exist between measurement and
modeling scales.

In general, forward simulations using these values will not adequately match the
observed petroleum reservoir production history on the first attempt, because of the
uncertainty in the initial estimates of the parameters. Consequently, the parameters
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are iteratively adjusted until an adequate match of the production history is obtained.
This process is known as “history matching”

Automatic history matching (AHM) is a process in which history matching is
performed using optimization techniques. In this approach, an objective function is
formed which is a function of the mismatch between the calculated values of pressure
and production history and the observed pressure and production history. The
objective function is then minimized with respect to the parameters to obtain an
updated set of parameters for use in the simulator.

DEVELOPMENT

Notation

H vector of true production history (pressure, water cut, gas oil ratio, etc.)

H* vector of measured production history

HC  vector of computed production history

H’  vector of computed production history at the optimization point

NH number of production history vector entries

eH*  vector of errors associated with H*

σ2

H*CH* covariance of eH*

CH*  covariance of eH*  scaled by  1/σ2

H*

σ2

H*  common variance of eH*

WH production history weight

rH production history residual vector

XH Production history sensitivity matrix

A vector of true seismic attributes

A* vector of measured seismic attributes

AC  vector of computed seismic attributes

A’ vector of computed seismic attributes at the optimization point

NA number of seismic attribute vector entries

eA*  vector of errors associated with A*
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σ2

A*CA*  covariance of eA*

CA*  covariance of eA* scaled by 1/σ2

A*

σ2

A*  common variance of eA*

WA seismic attribute weight

rA seismic attribute residual vector

XA seismic attribute sensitivity matrix

P vector of true parameters values

P
* 
vector of measured parameter values (prior information)

P
C  vector of current parameter values derived from the optimization routine

P’  vector of  parameter values at the optimization point

NP number of prior information vector entries

eP*  vector of errors associated with P
*

σ2

P*CP* covariance of eP*

CP*  covariance of eP*  scaled by  1/σ2

P*

σ2

P* common variance of eP*

WP prior information weight

rP prior information residual vector

XP prior information sensitivity vector

nP number of decision variables, nP ≥ NP

p reservoir pressure

SO oil saturation

SW water saturation

SG gas saturation

JK objective function

JK’ objective function at solution
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X total sensitivity (Jacobian) matrix

X’ total sensitivity matrix at solution

r augmented residual vector

r’ augmented residual vector at solution

G gradient vector

He approximate Hessian matrix

λM Marquardt parameter

λR step size relaxation parameter

s2 common variance

Formulation

Consider three objective function terms associated with the production history,
seismic attributes and prior knowledge of the parameter values. Typically the decision
parameters, PC, will consist of the log-permeability and the porosity. The production
values, HC, are calculated using the simulator and the model parameters PC. A set of
rock physics models, such as the Gassman equation, are used with the pressure and
saturation values computed by the flow simulator to calculate the seismic attributes,
AC.

Production History

Assume that production history measurements are related to the real production
history by,

*
*

HeHH +=
(1)

Further, the form of eH* is assumed to be normal with zero mean and covariance
σH*CH*. The matrix CH* has the form of the covariance of eH*, but it is scaled by the
inverse of the common variance σH*

2. The most common models for CH* is that the
production measurement errors are uncorrelated in space but may be correlated by a
one lag autocorrelation function in time. This means that CH* is a diagonal or block
diagonal matrix. The diagonal terms of CH* would vary if, for example, one set of
pressure data was considered less reliable than another set of pressure data.
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 The production history objective function term is,

( ) ( ).11 *1
*

*

*
22

*

HHCHHJ C
H

tC

H
H

H

−−= −

σσ (2)

The weighting terms 
2

*

1

Hσ
 and CH*

-1:

1. Scale the equation for variations in units (e.g. psi versus Kpa),

2. Weight more reliable data more than less reliable data, and

3. Filter the estimates based on the correlation between errors.

Seismic Attributes

In a manner analogous to the production history match, the seismic attribute match
leads to,

( ) ( ).11 *1
*

*

*
22

*

AACAAJ C
A

tC

A
A

A

−−= −

σσ (3)

In this case, it is possible the eA* may be correlated and the optimal CA* would be a
non-diagonal matrix.

Prior Estimates of Parameters

Estimates of porosity have been developed using well log information or well log
information in conjunction with seismic attributes. Permeability estimates may be
derived from upscaling core permeability, DST analysis, and correlation of porosity
with permeability. The information contained in these prior estimates can be
represented by the objective function term,

( ) ( ).11 *1
*

*

*
22

*

PPCPPJ C
P

tC

P
P

P

−−= −

σσ (4)

 In this case, the form of the covariance of eY* may be determined from the
estimation errors generated in the interpolation step (e.g. kriging or cokriging). This
term is sometimes referred to as a regularization term and improves the stability of
inverse procedures. In general, eP* will be correlated, and using the full correlation
structure while developing the weighting matrices has been shown to improve
estimates (Bentley, 1997).

Optimization

Assuming that the statistical assumptions (normality, etc.) are correct and that near
the solution the objective function is nearly linear in the parameters, then the
following objective function is optimal in a least squares sense,
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The correct weighting is seen to be the inverse of the covariance of errors in the
measurements and prior estimates. Using this form requires a priori knowledge of the
covariance of the errors, which are not known. In addition, we have neglected model
error in the sense that the flow simulator may not be able to match the true system
response due to inadequacies in the model equations or discretization. The
assumption of normally distributed errors leads to problems if there are extremely
large residuals.

To date, minimization of the equivalent of the full objective function J1 has not

been reported. Researchers have optimized the equivalent of P

P

H

H

JJJ
2
*

2
*

2

11

σσ
+=

(e.g. Gavalas et al. 1976, Chu et al. 1995, Chavent et al. 1975), or the equivalent of

A

A

H

H

JJJ
2
*

2
*

3

11

σσ
+=  (Huang, et al. 1997, Huang et al. 1998). In addition, Landa

and Horne (1997) use time lapse seismic data to estimate the change in saturation
within the reservoir and then solved a form of J2.

An approach that has been used in water resources is to assume that we know the
form of the covariance matrix, but not the magnitude of the common variances
(Carrera and Neuman, 1986). In this way, information on the relationship between the
errors within each residual type is included in the objective function, but the weights
associated with the common variances must be selected by some other criteria. These
weights determine the relative importance of each type of information. The revised
production history objective function term becomes,

( ) ( )*1* HHCHHWJW C
H

tC
HHH −−= −

(6)

Similar expressions are used for A with weighting WA and P with weighting WP. In
the literature the weights WK  (where K=H, A or P) have been chosen by a variety of
methods. The new objective function becomes,

PPAAHH JWJWJWJ ++=4
(7)

One method that has been used with success is to vary the weights based on
balancing the weighted variances as approximated by the current estimate of the
parameters. On the assumption that at the solution P’, the values of P’, H’ and A’ are
close to their true values, the weighted variances of  H*, A*, and P* can be
approximated by,



Contents

On incorporating time-lapse seismic survey data

CREWES Research Report — Volume 10 (1998) 33-7

( ) ( ) ( )*1
*

** '' HHCHH
N

W
HVar i

H

ti

H

i
Hi

−−= −

(8)
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The index i indicates values derived from the solution at iteration i, and NH, NA and
NP are the number of pressure measurements, seismic attribute values and prior
estimates of parameters, respectively. In order to balance the contributions of the
different data types, new weights are chosen to balance the weighted variances,

( ) 1*

1

−

−

=
i

i
Ki

K
KVar

W
W

(11)

The weights are adjusted at the end of each run until the variances are
approximately equal. Two or three iterations are generally required to reach a
balanced set of weighted variances (Weiss and Smith, 1998).

Computational Issues

Gradient and Sensitivity Matrix

Several approaches have been used to solve the minimization problem (e.g.
equation (5)). In the following, we focus on the Marquardt method (Marquardt,
1963). Each Marquardt iteration, the gradient and the sensitivity coefficients must be
computed. Define the residual vectors,

*HHr C
H −=

(12)
*AAr C

A −=
(13)

*PPr C
P −=

(14)

The residual vectors at the solution are denoted rK’, where K= H, A or P. The
global residual vector is

[ ]t
P

t
A

t
H

t rrrr =
(15)

The production history residual vector contains NH entries. These will be arranged
as time series data from several to tens of production and injection wells. It is possible
for seismic attribute data to exist at each grid block within the simulator, and
consequently, the dimension of the vector can theoretically be in the tens of
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thousands. With three permeability values (κX, κY, κZ) and a porosity associated with
each grid block, the number of parameters can be in the tens of thousands.

A sensitivity coefficient is the partial derivative of an individual residual with
respect to a decision variable. Each type of residual has a sensitivity matrix associated
with it. An element of the production history sensitivity matrix is,

j

C
i

Hij P

H
X

∂
∂

=
(16)

where each row i=1 to NH is associated with a production history residual and each
column j=1 to nP is associated with a decision parameter. Similarly, the seismic
attribute residual sensitivity coefficients are,

j

C
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X

∂
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=
(17)

where i=1 to NA and j=1 to nP. Assume that variations in seismic attribute can be
calculated from the pressure and saturation,

),,,( GWO SSSpFA =
(18)

Then, the seismic attribute sensitivities can be calculated using the chain rule,
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Consequently, the partial derivative of the pressure and saturations with respect to
each parameter is required at each location of a seismic attribute value. These same
derivatives are required for the evaluation of equation (16), but only at the locations
of the wells used in the production history match. In some cases, temperature would
need to be modeled as a state variable, because it can also have a significant effect on
the seismic response.

     The sensitivity coefficients for the prior information are,

j

C
i

Pij P

P
X

∂
∂

=
(20)

with rows i=1 to NP and columns j=1 to nP. The prior information matrix consists of
entries of ones and zeroes, and if every parameter has prior information then the
matrix is the identity matrix.
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The total sensitivity matrix is constructed,

[ ]t
P

t
A

t
H

t XXXX =
(21)

and it has N=NH+NA+NP rows and nP columns. It is possible for the number of
parameters to be in the tens of thousands. The huge dimensionality of the parameter
space and the limited amount of observational data lead to a problem that is
inherently underdetermined. Consequently, uniqueness and identifiability are issues
in the parameter optimization problem. In practice, the dimension of the parameter
space is reduced by lumping many grid blocks together in zones of equal value or to
use interpolation methods such as the pilot point method to populate the reservoir
with a smaller number decision variables located ate the interpolation points (pilot
points). We are currently investigating the use of cluster algorithms for dynamic
zoning.

     The calculation of the sensitivity matrix is a major computational burden. Three
approaches have been used. In the perturbation method, each parameter is perturbed
and a forward simulation is run to compute the new value of the residuals. The
sensitivity matrix is then constructed by the finite difference method. This method is
only computationally feasible with a small number of parameters. In the adjoint
equation method, the equivalent of a separate simulation run is needed for each of the
observation locations. This method was useful when the number of observation
locations was limited to a small set of production and injection wells. However, the
inclusion of spatially dense seismic attribute data requires the sensitivity calculations
to be carried out at thousands of locations, and the adjoint equation method is not as
attractive for the cases in which time-lapse seismic data is included in the objective
function. In the gradient simulation method (Anterion et al. 1989), the equivalent of
an extra flow simulation plus for each decision variable one back substitution is
required for each Marquardt iteration. At present, this appears to be the best approach
for calculating sensitivity coefficients for the cases with time-lapse seismic terms in
the objective function.

      The global weighting matrix for objective function J4 is,
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The other objective functions have analogous weighting matrices.

The gradient of the objective function is,

rCX
P

J
G tk 12 −=

∂
∂

=
(23)

where k indicates the form of the objective function (i.e. k=1, 2, 3, or 4). The vector
G has a length of nP.
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     If the residuals are small and/or the equation is quasi-linear, then the Hessian
matrix can be approximated as,

( )XCX
P

J
H tk

e
1

2

2
−≈

∂
∂

=
(24)

The matrix He has dimensions nP  by nP.

     The Marquardt algorithm update is,

( )( ) GIXCXPP k
M

tk
R

kk 111 −−+ ++= λλ
(25)

where k is the iteration index, λM  is the Marquardt parameter and λ R is a relaxation
parameter to control the step size.

Transformation and Scaling

Improving the conditioning of the objective function will improve the solution and
reduce the computational effort required to reach a solution. Parameters and residuals
are often scaled or transformed in order to provide a better conditioned objective
function. In addition, transformed variables often have better statistical properties
than the primary variables. For example, permeability is generally transformed to log-
permeability for geologic and statistical reasons. Appropriate weights will depend on
the form of the scaled or transformed variables, so transformation choices are related
to weighting choices.

Often the decision variables are normalized to one in order to improve the
conditioning of the objective function. If the current value of the parameters is PC,
then the scaling takes the form,

C
j

C
ieij

S
eij PPHH =

(26)
C

ii
S
i PGG =

(27)

C
i

iS
i P

P
P =

(28)

Error Estimates

At the solution, the common variance of the weighted errors can be estimated by
linear error analysis,

DPPAH N
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J
s 442 '
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=

(29)

where ND is the difference between the number of residuals and the number of
decision variables.
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     An estimate for the estimation variance of the parameters is,

( ) ( ) 112 '''
−−= XCXsPVar t

(30)

where the prime indicates that the values are evaluated at the optimal solution. A
linear approximation of the confidence regions is given by,

( ) ),()'(''' 21
DPP

tt NnFsnPPXCXPP α≤−− −

(31)

where F∝ is an F distribution with nP and ND degrees of freedom.

CONCLUSION

The goal of automatic history matching (AHM) is to improve the parameter
selection for petroleum reservoir simulators in order to improve their reservoir
forecasting capability. An approach for including time-lapse seismic data into AHM
has been presented and some practical issues have been discussed.

AHM is still not routinely used, even after more than twenty years of
development. The difficulties are related to the extreme nonlinearity of the objective
function, the high dimensionality of the decision variable set, problems associated
with uniqueness and identifiability of parameters, and difficulties associated with
computing the sensitivity matrices. AHM based solely on production data observed at
a limited number of well locations suffers because of the sparsity of the spatial
sample. Seismic data has the inherent advantage of being a spatially dense data set,
and preliminary indications are that including time-lapse seismic data will lead to
improved AHM.

Although the routine application of AHM remains an elusive goal, studying time-
lapse seismic survey results in the context of AHM is valuable. The mathematical
formulation of AHM gives us insight into the history matching process and helps
analysts identify the underlying structure of the history match problem. Study of the
sensitivity of seismic attributes to changes in reservoir parameters, objective function
gradients and estimation variance will lead to insights into the effectiveness of
integrating time-lapse seismic data into reservoir simulation and reservoir forecasting.
In turn, these insights will guide time-lapse seismic acquisition and processing
choices.
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