
A SEG-Y file I/O toolbox for Matlab

 CREWES Research Report � Volume 12 (2000)

A SEG-Y file I/O toolbox for Matlab

Henry C. Bland and Paul R. MacDonald

ABSTRACT
Programs that read and write seismic data are essential in exploration geophysics.

Although many file formats exist for storing seismic data, the SEG-Y format is the
most widely used for transferring data between geophysical applications.
Unfortunately, this file format suffers from many shortcomings: Designed in a time
when computers were four orders of magnitude slower than today, the format is
unsophisticated, has limited extensibility, and stores its data in a way that is foreign to
the vast majority of modern computers. The format's simplicity has been the key to its
longevity. Programmers with little experience are able to produce code that reads and
writes files resembling the SEG-Y standard. Unfortunately, the code usually falls
short of implementing the full SEG-Y standard, and many SEG-Y files remain
unreadable by this code. Even worse is that many programmers, for lack of time or
ability, write software that creates non-conformant SEG-Y files. Many popular
geophysical applications exhibit serious flaws in their ability to read and write SEG-Y
files. Since our research group writes a lot of software that performs seismic I/O, we
chose to write a new, easy-to-use seismic I/O toolbox that could read and write
standard-conforming SEG-Y files.

The CREWES Seismic I/O toolbox provides a comprehensive set of functions for
working with SEG-Y files. In addition to basic trace reading and writing, the toolbox
offers features for sorting traces, trace selection based on trace header criteria, and
file-wide indexing of gathers. Most importantly, the toolbox handles many of the
tedious details of the format, such as floating-point-type conversion and byte-order
swapping.

The authors hope that this toolbox will greatly assist geophysics-related research in
Matlab. With the aid of this toolbox, Matlab can operate on data from other
geophysical applications easily and reliably. This toolbox enhances Matlab and
makes it an even more optimal environment for developing new geophysical
algorithms and processing techniques.

OVERVIEW
The CREWES Seismic I/O library for Matlab is called the crSeisio Toolbox

(pronounced C-R-seis-I-O). The toolbox has been designed to be easy to use. A large
number of examples will be shown to illustrate correct usage of the toolbox.
Installation of the toolbox is beyond the scope of the paper. Readers are encouraged
to view the documentation that accompanies the toolbox in the CREWES Software
Release. This accompanying documentation also contains a comprehensive reference
for the toolbox.

Many of the examples that follow use a mixture of upper- and lower-case letters in
function and variable names. Since Matlab is not a case sensitive language, users are

Bland and MacDonald

 CREWES Research Report � Volume 12 (2000)

free to use whichever case they choose (or both, as the authors have done). We feel
that mixed-case names are more easily understood, and aid in code readability.

TUTORIAL

Reading traces from a file
Let us begin with a short example � reading a single trace of data and plotting it on

the screen.

1 sf=crSeisioFile('test.sgy','r');
2 trcData = readTrc(sf);
3 plot(trcData);
4 close(sf);

Line 1 opens the file called test.sgy for read access. The crSeisioFile function returns
a handle1 pointing to the newly opened file. Line 2 reads a single trace of data from
the file. The seismic data is returned as the array trcData. Line 3 plots the data in a
window.

We can expand this example to read and plot all the traces in a file.

1 sf = crSeisioFile('test.sgy','r');
2 allTrcs=zeros(0,0);
3 oneTrc = readTrc(sf);
4 while not(isempty(oneTrc))
5 allTrcs(:,end+1) = oneTrc;
6 oneTrc = readTrc(sf);
7 end
8 [nSamp nTraces]= size(allTrcs);
9 shiftArray = (ones(nSamp,1) * [1:nTraces]);

10 plot(allTrcs + shiftArray,[1:nsamp]);

By adding a while loop, we can load all the traces in a file into the 2-dimensional
array allTrcs. The traces are stored in allTrcs as columns � this is the standard
for all CREWES seismic toolboxes. The loop reads through all the traces in the file
until the end-of-file is reached. When that happens, readTrc returns an empty
matrix and the loop exits. In order to spread-out the traces (so that they don't all plot
on top of each other) we've added a trace-shift to the 2-D ensemble of data. We add a
constant of 1 to all samples in trace one, a constant of 2 to all samples in trace two,
and so on.

SEG-Y Headers
The examples to this point have ignored the presence of file and trace headers that

may have been in the SEG-Y file. The term header refers to a collection of
information about the seismic recording that is not the set of time-sample seismic
amplitudes. For example, the number of samples per trace is one item stored in the
headers. Each piece of information stored in a header is called a header word. All

1 To be strictly correct, crSeisioFile, returns a "crSeisioFile object". Those not familiar with Matlab's
object oriented programming techniques can consider the variable as a "handle".

A SEG-Y file I/O toolbox for Matlab

 CREWES Research Report � Volume 12 (2000)

SEG-Y files contain three kinds of headers � the text header2 (one per file), the file
data header (one per file) and trace headers (several per file). Figure 1 shows the
structure of a SEG-Y file. We can see that it begins with a file header, and is followed
by a number of traces. The file header contains two parts � a text part and a data part.
The text part has room for 40 lines of text, with each line having a length of 80
characters. The data part contains up to 120 header words, though only a handful are
typically used. Each trace also has it's own header � a trace header. Trace headers
contain a number of header words whose values typically change from trace to trace.
The SEG-Y standard defines the attributes of all header words: their description, their
data type (2-byte integer or 4-byte integer), and their byte position within the header.
Many of the header words are considered optional, and are left containing a value of
zero by most programs.

Text Part
(EBCDIC header)

Data Part
(Reel Binary Header)

Trace header for trace 1

Data for trace 1

Trace header for trace 2

Data for trace 2

Trace header for trace 3

Data for trace 3

File Header

Trace 1

Trace 2

Trace 3

Figure 1. Structure of a SEG-Y file.

While some headers words can be left blank (full of zeros), certain header words
must always be specified or the data file will be unreadable by most geophysical
applications. If we only concern ourselves with reading the time-sample data from
SEG-Y files, we can safely ignore the headers. If we want to know more about the
file (such as the sample rate, shot-point of each trace, trace coordinates, etc) we must
read both the trace data and the headers.

2 The document that describes the SEG-Y standard uses the nomenclature "EBCDIC header" to
describe the text part of the file header, and "reel binary header" to describe the data part of the file
header. We'll use our nomenclature from this point on, as it easier to understand.

Bland and MacDonald

 CREWES Research Report � Volume 12 (2000)

Reading text from the file header
Reading file headers and trace headers is made simple with the crSeisio library.

Consider the following example that reads and displays the text stored in the file
header.

1 sf = crSeisioFile('file.sgy','r');
2 fileHdr = crSeisioFileHdr;
3 readFileHdr(sf, fileHdr);
4 linesOfText = getText(fileHdr);
5 disp('SEG-Y Text header contents:');
6 disp(linesOfText);
7 close(sf);

Line 1 opens the file file.sgy for read access. Line 2 creates an empty file header
object. One can consider fileHdr as a special type of variable that can hold an
entire file header's contents. Although line 2 looks like it is a simple variable
assignment, it is not � crSeisioFileHdr (on the right hand side of the equation)
is a object creation function. The crSeisio toolbox currently contains four of these
special functions: crSeisioFile, crSeisioFileHdr, crSeisioTrcHdr
and crSeisioHdrDefn. Sometimes these functions are called with arguments (as
in line 1), but the latter three are most frequently called without any arguments. It is
easiest to think of line 2 as meaning "the variable fileHdr is going to hold a file
header object."

Line 3 reads the file header from the opened SEG-Y file and places it in the
fileHdr variable. Line 4 extracts the text from fileHdr, giving us a 2-D
character array containing the lines of text. This array is 40 rows by 80 columns and
stores each line of text as a row. Simply displaying this array (line 6) prints the text
header on the screen in human readable form. On line 7, the file is closed.

Wring text to the file header
Writing text into a file header is accomplished with setText:

1 sf = crSeisioFile('new.sgy','w');
2 fileHdr = crSeisioFileHdr;
3 for lineNumber=1:40
4 setText(fileHdr, 'it bears repeating', lineNumber);
5 end
6 writeFileHdr(sf, fileHdr)
7 close(sf);

This example fills the text header with forty lines of "it bears repeating". We
generally strive to create more meaningful text headers than this. You may note that
line 1 opens the SEG-Y file for write access (indicated by 'w') rather than read access
(indicated by 'r'). To modify an existing SEG-Y file, one can specify a read/write
mode of 'm'. The writeFileHdr function on line 6 writes-out the file header to the
SEG-Y file. This can be done at any time � even after writing several traces to the
file. It should be noted that the crSeisioFileHdr object (the file header) is not
necessarily associated with a particular file. Within Matlab one can store and retrieve
text in a crSeisioFileHdr object without performing any file operations (though

A SEG-Y file I/O toolbox for Matlab

 CREWES Research Report � Volume 12 (2000)

there is no reason to do this). The only time data is exchanged between the
crSeisioFileHdr object and the crSeisioFile object is when
readFileHdr or writeFileHdr is called.

Reading headers words from the file header
To read header word values from the data part of the file header, we call the

function get(fileHdr,headerName) supplying the name of the desired header
word as the second argument. This is illustrated in the following example:

1 sf = crSeisioFile('test.sgy','r');
2 fileHdr = crSeisioFileHdr;
3 readFileHdr(sf,fileHdr);
4 nSamp = get(fileHdr,'NSAMP');
5 disp(['The file header says, NSAMP=' num2str(nSamp)]);
6 close(sf);

The file header says NSAMP=2001

On line 4 we get the value of a specific header word � in this example, NSAMP, the
number of samples per trace. The names of the header words come from a standard
list contained within the crSeisio library. Table 1 lists all these header word names.
We can also obtain these names using the getHdrNames function:

1 fileHdr = crSeisioFileHdr;
2 names = getHdrNames(fileHdr)

names =

JOB_ID
SEISLINE
REAL_NO
…

The previous example gets an array containing the header names that have been
defined for the file header.

We can easily determine the values of all defined header-words stored within the
data part of the file header as follows:

1 sf = crSeisioFile('file.sgy','r');
2 fileHdr = crSeisioFileHdr;
3 names = getHdrNames(fileHdr);
4 readFileHdr(sf, fileHdr);
5 close(sf);
6 values = get(fileHdr,names);
7 for i=1:size(names,1)
8 fprintf(1,'%-14s: %14s\n',names(i,:), num2str(values(i)));
9 end

JOB_ID : 98141
SEISLINE : 12
REAL_NO : 1
…

Bland and MacDonald

 CREWES Research Report � Volume 12 (2000)

Line 3 calls getHdrNames to obtain a vector of header names (names). In line 6
we pass an array of header names to get(fileHdr…) rather than just a single
name. The result is an array of values. Each element in values has a corresponding
element in names at the same index. Lines 7 through 9 simply print these two
vectors side-by-side separated by a colon. Using this technique, we can get a
complete dump of the header words defined in the file header.

Writing header words to the file header
When creating a SEG-Y file from scratch, a number of header words should be

specified. In particular these include the number of samples per trace (NSAMP), the
sample interval (SAMPINT), and the data format (DATAFMT). The following example
shows how this can be done:

1 sf = crSeisioFile('new.sgy','w');
2 fileHdr = crSeisioFileHdr;
3 put(fileHdr,'NSAMP',2501);
4 put(fileHdr,'SAMPINT',2000);
5 put(fileHdr,'DATAFMT',1);
6 writeFileHdr(sf,fileHdr);
7 % add code here to write traces
8 close(sf);

This example is specifies that there are 2501 samples at a 2ms sample interval (5
seconds of data). The data sample format is set to 1, which corresponds with the
default data format (4-byte IBM floating point).

Trace headers
Our discussion so far has been of the SEG-Y file header. In reality, the most

interesting header words are stored in the trace headers. Well-behaved SEG-Y files
store information such as the shot number, receiver number, receiver coordinates, and
shot coordinates within the trace header. The following example shows how one
might read various trace header values. It prints the field file ID (shot number) and
offset for each trace in the file.

1 sf = crSeisioFile('file.sgy','r');
2 trcHdr = crSeisioTrcHdr;
3 trcData = readTrc(sf, trcHdr)
4 trcNo = 0;
5 while not(isempty(trcData))
6 ffid = get(trcHdr,'FFID');
7 offset = get(trcHdr,'OFFSET');
8 trcNo = trcNo + 1
8 fprintf(1,’TRC=%d FFID=%d OFFSET=%f’,trcNo,ffid,offset);
9 trcData = readTrc(sf, trcHdr);
10 end
11 close(sf);

A SEG-Y file I/O toolbox for Matlab

 CREWES Research Report � Volume 12 (2000)

TRCNO=1 FFID=100 OFFSET=-240
TRCNO=2 FFID=100 OFFSET=-220
TRCNO=3 FFID=100 OFFSET=-200
…

We use the get function extract a value of a named header word from the trace
header trcHdr.

 Just as before, in the file header example, we can get the list of header words in
the trace header using getHdrNames. We can then get a vector of values for all the
header names, and print them as before:

1 sf = crSeisioFile('file.sgy','r');
2 trcHdr = crSeisioTrcHdr;
3 names = getHdrNames(trcHdr);
4 trcData = readTrc(sf, trcHdr);
5 values = get(trcHdr,names);
6 for i=1:size(names,1)
7 fprintf(1,'%30s: %12.2f\n’,names(i,:), values(i));
8 end
9 close(sf);

LINETRCNO : 1
FILTRCNO : 1
FFID : 17
CHAN : 1
…

The values can be placed in the trace header using put(trcHdr,
headerName). Upcoming examples will illustrate the use of this function.

Processing from one file to another
We will now try and write our first processing algorithm � a DC removal filter.

This can be achieved by subtracting the mean value from each trace in a file. Rather
than hard-code the input file and output file, we will use the Matlab function
uigetfile. This function prompts the user with a file selection box. The selected
file is then returned as a filename and path (directory name). We combine the
filename and path so that crSeisioFile can locate the file from any directory on
the system.

Unlike many of our previous examples, we don't need to access the contents of any
of the headers. Since we're only changing the data, we can simply copy the file header
and trace headers from the input file to the output file.

1 [filename, path]=uigetfile('*.sgy', 'Select input file');
2 inputFileName = [path filename];
3 [filename, path]=uiputfile('*.sgy', 'Save to file');
4 outputFileName = [path filename];
5 sfIn = crSeisioFile(inputFileName, 'r');
6 sfOut = crSeisioFile(outputFileName, 'w');
7 fileHdr = crSeisioFileHdr
8 readFileHdr(sfIn, fileHdr);
9 writeFileHdr(sfOut, fileHdr);

Bland and MacDonald

 CREWES Research Report � Volume 12 (2000)

10 trcHdr = crSeisioTrcHdr;
11 trcData = readTrc(sfIn, trcHdr);
12 while not(isempty(trcData))
13 trcData = trcData – mean(trcData);
14 writeTrc(sfOut, trcData, trcHdr);
15 trcData = readTrc(sfIn, trcHdr);
16 end
17 close(sfIn);
18 close(sfOut);

Lines 1 to 4 determine the input file name and output file name. Line 5 opens a
SEG-Y file for read access (note the 'r' for read as the second argument). Line 6
opens a new SEG-Y file for write access (note the 'w'). Lines 7, 8, and 9 create a file
header, fill it with the contents of the old file, and copy it to the new file. Line 10
creates a trace header � as we read each trace, the contents of the trace header will be
copied across to the new file without any modification. Line 12 checks for the end-of-
file, and stops the loop when one is reached. Line 13 performs our mathematical
operation � removal of the D.C. component. Line 14 writes the trace to the output
SEG-Y file (indicated by the sfOut). Lines 17 and 18 close the two SEG-Y files
thereby freeing up system resources and flushing the contents of the SEG-Y file to
disk.

Creating a new SEG-Y file from scratch
When copying an existing file using the crSeisio toolbox, we don't need to concern

ourselves with populating the file and trace headers � we just copy the existing
headers and hope that the creator of the original SEG-Y file provided sufficient
information in the headers. If we write our a brand new SEG-Y file, it is important to
set a small number of headers to a reasonable value:

1 sf=crSeisioFile('new.sgy','w');
2 fh = crSeisioFileHdr;
3 th = crSeisioTrcHdr;
4 nSamp = 2001; % 2001 samples per trace
5 sampleInterval = 2000; % 2000us = 2ms sample interval
5 put(fh,'NSAMP',nSamp);
6 put(fh,'DATAFMT',1); % 1 = 4-byte floating point(IBM)
7 put(fh,'SAMPINT',sampInt);
8 put(th,'NSAMP',nSamp);
9 put(th,'SAMPINT',sampInt);

10 put(th,'TRC_ID',1); % 1 = production data
11 writeFileHdr(sf, fh);
12 trcData = sin([1:nSamp]/100);
13 writeTrc(sf,th,trcData);
14 close(sf);

The example above creates a file with a single trace � containing a sine-wave signal.
It should be readable by most geophysical applications. Unless setDataFmt is
called, crSeisio toolbox creates files with data stored as 4-byte floating point numbers
using the SEG-Y standard encoding (based on old IBM mainframes). This data
format is indicated in the SEG-Y file's header by setting the DATAFMT header to 1.

A SEG-Y file I/O toolbox for Matlab

 CREWES Research Report � Volume 12 (2000)

Reading traces out of order
We can read the traces out of order, by specifying a trace number parameter to the

readTrc and writeTrc functions. The first trace of a file is always trace number
1. The following example reverses the order of all traces in a file:

1 sfIn = crSeisioFile('input.sgy','r');
2 sfOut = crSeisioFile('output.sgy','w');
3 trcHdr = crSeisioTrcHdr;
3 numTrcsIn = getNumTrcs(sfIn);
4 trcNumIn = numTrcsIn;
5 for trcNumOut = numTrcsIn:-1:1
6 trcData = readTrc(sfIn,trcHdr,trcNumIn);
8 writeTrc(sfOut,trcData,trcHdr,trcNumOut);
9 trcNumIn = trcNumIn – 1

10 end
11 close(sfIn);
12 close(sfOut);

Here, we make use of the getNumTrcs function to obtain the total number of traces
in the file. We read the input file from back-to-front, and write to the output file from
front-to-back.

Reading traces in sorted order
One of the more powerful features of the crSeisio toolbox is its ability to sort

traces as they are read from a SEG-Y file. For example, if a SEG-Y file contains data
shot out-of-order (which is typical in 3-D surveys), it is easy to re-order based on
trace header word values:

1 sf = crSeisioFile('file.sgy','r');
2 sf = crSeisioSort(sf,'SRC_X');
3 sf = crSeisioSort(sf,'REC_X');
4 trcData = readTrc(sf);

The above example first sorts by source-X coordinate in ascending order. If any
traces share the same source-X coordinate, they are further sorted by receiver-X
coordinate. By default, the sorting is performed in ascending order. In order to sort in
descending order, one needs add the extra argument 'descending'.

Any trace operations that follow the crSeisioSort call now operate on the traces in
their sorted order. If a trace number is explicitly specified to the readTrc or
writeTrc function, the trace number must now be taken in the context of the sort.
For example, if we sort by descending receiver elevation, and read trace number 1,
this will correspond to the trace with the highest elevation, regardless of that trace's
position within the input file.

Selecting subsets of traces for input
Consider the case where we want to obtain a single receiver gather from a set of

shot-gathers. If we know the X-coordinate of the receiver, we can build the receiver
gather using the select function:

Bland and MacDonald

 CREWES Research Report � Volume 12 (2000)

1 sf=crSeisioFile('input.sgy','r');
2 sf=select(sf, 'REC_X', '=', 260);
3 recGather=[];
4 trcData = readTrc(sf);
5 while not(isempty(trcData))
6 recGather(:,end+1) = trcData;
7 trcData = readTrc(sf);
8 end

The select function, used on line 2, supports a number of comparison operators: <,
>, =, >=, <=. This allows one to make expressions like this:

 CDP <= 120 Read all CDPs less or equal to 120
 SHOT > 12 Read all SHOTSs greater than 12

Calling select multiple times with different selection expressions has a cumulative
effect. Only those traces that satisfy all selection criteria are made available to
readTrc. Processing of all sort and select operations occurs at the first call to
readTrc or writeTrc. Since select operations are performed in the order of the
select calls, it is best to place the most restrictive selection firsts to maximize
efficiency. Consider the following example:

sf=select(sf, 'CDP' , '>', 12);
sf=select(sf, 'OFFSET', '>=', 20);
sf=select(sf, 'OFFSET', '<=', 200);
sf=sort(sf, 'CDP');
sf=sort(sf, 'REC_X');

In the example above, only traces with a CDP greater than 12, and an offset between
20 and 200 are selected. All traces that pass the selection criteria are sorted by CDP.

Customizing header word locations
The SEG-Y standard allows for some flexibility in the assignment of trace header
words. There is room in each trace header for about 15 user-definable header words.
It is also common to reassign certain header words in non-user-definable portions of
the trace header. Though this makes the file non-compliant with the standard, it is
common practice. Fortunately, the crSeisio toolbox was designed to handle these
situations. Consider the case where we want to read the job-id from a non-standard
location in the file data header (byte 31). At the same time, we want to read the X and
Y-coordinates for CDPs from bytes 181-184 and 185-188 of the trace header. Here is
how this is done:

1 hdrDefn = crSeisioHdrDefn
2 loadDefaults(hdrDefn);
3 set(hdrDefn, 'JOB_ID', 'JOB ID', 'FILE', 'I4', 31);
4 set(hdrDefn, 'CDP_X', 'CDP X coord UTM', 'TRC', 'I4', 181);
5 set(hdrDefn, 'CDP_Y', 'CDP Y coord UTM', 'TRC', 'I4', 185);
6 fileHdr = crSeisioFileHdr(hdrDefn);
7 trcHdr = crSeisioTrcHdr(hdrDefn);
8 sf = crSeisioFile('input.sgy','r');
9 readFileHdr(sf, fileHdr);

10 jobId = get(fileHdr, 'JOB_ID');

A SEG-Y file I/O toolbox for Matlab

 CREWES Research Report � Volume 12 (2000)

11 disp(['job id = ' num2str(jobId)]);
12 trcData = readTrc(sf, trcHdr);
13 cdpX = get(trcHdr, 'CDP_X');
14 cdpY = get(trcHdr, 'CDP_Y');
15 disp(['CDP_X=' num2str(cdpX)]);
16 disp(['CDP_Y=' num2str(cdpY)]);
17 close(sf);

job id = 9281
CDP_X = 841621
CDP_Y = 5610921

Until now, our examples have called crSeisioFileHdr and crSeisioTrcHdr
without supplying any arguments. In the above example we specify our own header
definition rather than use the default one. We create the definition on line 1 and
populate it with the default header words on line 2. Line 3 re-defines the location of
JOB_ID to byte 31 of the file header (the default is byte 1). Lines 4 and 5 define new
trace header words that are not part of the default set of header words (table 1). Now,
when we create a file header and trace header objects (lines 5 and 6), they will use our
customized header definitions rather than the system default.

To allow programs to customize the header definitions through an external text
file, rather than setting header definitions with Matlab code, we have provided the
readFromFile function:

1 hdrDefn = crSeisioHdrDefn;
2 loadDefaults(hdrDefn);
3 readFromFile(hdrDefn, 'test.def');

This example creates an empty header definition on line 1 and populates it with
header definitions from the system defaults on line 2. On line 3 we read additional (or
replacement) header definitions from a file called test.def. Both the loadDefaults
and readFromFile functions add definitions to a header definition object
cumulatively.

Header definitions can be written to a text file using the writeToFile function,
as in the following example:

1 hdrDefn = crSeisioHdrDefn;
2 loadDefaults(hdrDefn);
3 readFromFile(hdrDefn, 'test.def');
4 writeToFile(hdrDefn, 'defaults_plus_test.def');

The header definition files contain five columns of text separated by at least one
space or tab. Here is an example:

JOB_ID_HDR F I4 1 Job identification number
SEISLINE F I4 5 Line number
REAL_NO F I4 9 Reel number
FFID T I4 9 Original field file number
NUMSMP T I2 114 Number of samples per trace

Bland and MacDonald

 CREWES Research Report � Volume 12 (2000)

This list of header words is just a small sample of the entire list of defaults. The first
column is the header name to be used when calling get(hdrDefn,hdrName) and
put(hdrDefn,hdrName,…). The second column contains the header type �
either "F" for file header or "T" for trace header. The third column contains the
format of the header. The most common format is 4-byte integer (I4), but header
words can also be 2-byte integers (I2) or 4-byte floating-point numbers (F4IBM or
F4IEEE). The last column contains the description of the header word.
Reading a whole file at a time

Previous examples have always read traces one at a time. Though simple, this
method is far from efficient. The following example shows how we can read a whole
file of trace data and trace headers at a time:

1 sf = crSeisioFile('input.sgy','r');
2 sort(sf,'CDP','descending');
3 [trcData, trcHdrs] = readAllTrcs(sf);
4 close(sf);

Here trcData is a 2-dimensional matrix, with each trace in a different column. The
trcHdrs variable contains vector of trace header objects, with one element per
trace. Although this example sorts the traces before reading them, this is not a
requirement.

The array of trace headers can be used to find the header words associated with the
all the traces. The next example illustrates how this is done.

1 sf = crSeisioFile('test.sgy','r');
2 [trcData, trcHdrs] = readAllTrcs(sf);
3 close(sf);
4 [nSamp nTraces]= size(trcData);
5 shiftArray = (ones(nSamp,1) * [1:nTraces]);
6 plot(trcData + shiftArray,[1:nTraces]);
7 values = get(trcHdrs,'CDP');
8 set(gca,'xtickmode','manual');
9 set(gca,'xtick',[1:nTraces]);

10 set(gca,'xticklabel',values);
11 set(gca,'ydir','reverse');

The previous example illustrates how we can obtain a vector of trace header values
given a vector of trace headers (line 7). Each element in values contains a CDP
value corresponding to each trace (column) in trcData. Using Matlab's built-in
plot function, we can plot the traces, and apply the CDP as tick labels under each
trace. Line 7 sets the tickmode to 'manual', allowing us to specify our own tick
locations along the X-axis. Line 8 creates tick marks along the zero-line of each
trace. Line 9 applies the CDP values as the tick labels. Line 10 reverses the direction
of the Y-axis, making time-zero at the top. The resulting plot is shown in figure 2.

A SEG-Y file I/O toolbox for Matlab

 CREWES Research Report � Volume 12 (2000)

1 1 2 2 3 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. Synthetic seismic data plot in Matlab with CDP numbers shown as tick labels along
the X-axis.

As seen in the final example, the combination of Matlab and the crSeisio toolbox
makes it very simple to accomplish a great deal of work in only a few lines of code.

THE CREWES SEISMIC TOOLBOXES
The crSeisio is only one of the CREWES Toolboxes. These toolboxes contain

hundreds of functions that perform common seismic operations; including much more
sophisticated functions for seismic data plotting. Readers are urged to investigate
these other toolboxes to make the most of their Matlab experience.

CONCLUSION
The CREWES Seismic I/O toolbox is a comprehensive collection of functions that

makes it easy to read and write SEG-Y files. It provides both high-level functions
(such as data sorting) as well as low-level functions (such as custom header
definitions).

The crSeisio toolbox is based on a low-level SEG-Y library written in the C
language. The Matlab interface to this library has been completed, and a Java
interface is in the final stages of development. It is our hope to provide this library to
users of other languages, such as C and Fortran, in the near future.

Bland and MacDonald

 CREWES Research Report � Volume 12 (2000)

Table 1. Common default header word definitions. File headers are indicated by header type
F. Trace headers are indicated by header type T.

Header Name Description Header
Type

Header
Format

Byte
Pos.

JOB_ID Job identification number F I4 1
SEISLINE Line number F I4 5
REEL_NO Reel number F I4 9
NTRACES Number of traces per record F I2 13
NAUXTRACES Number of auxiliary traces

per record
F I2 15

SAMPINT Sample Interval (us) F I2 17
NSAMP Number of samples per trace F I2 21
DATAFMT Data sample format F I2 25
CDP_FOLD CDP fold F I2 27
XYUNITS Measurement system F I2 55
LINTRCNO Trace sequence number within

line
T I4 1

FILTRCNO Trace sequence number within
file

T I4 5

FFID Original field record number T I4 9
CHAN Trace number within original

field record
T I4 13

SRC_NO Energy source point number T I4 17
TRC_ID Trace identification code T I2 29
SHOTFOLD Number of horizontally

stacked traces
T I2 33

DATAUSE Data use T I2 35
OFFSET Distance from source point

to receiver group
T I4 37

REC_ELEV Receiver group elevation T I4 41
SRC_ELEV Surface elevation at source T I4 45
XYSCALER Scalar to be applied to all

coordinates
T I2 71

SRC_X Source coordinate - X T I4 73
SRC_Y Source coordinate - Y T I4 77
REC_X Receiver coordinate - X T I4 81
REC_Y Receiver coordinate - Y T I4 85
XYDOMAIN Coordinate units T I2 89
NSAMP Number of samples in trace T I2 115
SAMPINT Sample interval (us) T I2 117
YEAR Year data recorded T I2 157
DAY Day data recorded T I2 159
HOUR Hour data recorded (24hr

clock)
T I2 161

MIN Minute data recorded T I2 163
SEC Second data recorded T I2 165

