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John C. Bancroft and Charles P. Ursenbach 

ABSTRACT 
A zero-offset stacked section that contains an oblique reflector can be migrated 

successfully by raising the migration velocity.  What prestack processing can be 
performed to improve the diffracted energy on the stacked section? 

A special moveout correction can be applied to enhance the oblique reflection on 
the stacked section and modified prestack migration operators may also be used to 
enhance the oblique reflection.  The benefit of these special processes will depend on 
the linear extent and angle of the oblique reflector.  Satisfactory results can also be 
obtained when stacking with the RMS velocity and when stacking with an RMS 
velocity that is increased by the inverse of the cosine of the angle of obliquity. 

INTRODUCTION 
A special 2-D poststack migration of oblique reflectors was described by French 

(1975) in which the migration velocity Vmig is increased over the RMS velocity Vrms 
as given in equation (1) 

 γcos
rms

mig
VV =

, (1) 

where γ is the angle of obliquity, as illustrated in Figure 1. 
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Figure 1.   A perspective view of a 2-D seismic line above an oblique reflector. 
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It is assumed that the medium below the seismic line is horizontally layered and 
that travel times may be estimated using RMS velocities. 

Figure 2 is a plan view of Figure 1, and illustrates the zero offset raypaths for 
different surface locations.  The raypaths are confined to vertical planes that are 
normal to the oblique reflector.  The reflection points on the reflector move away 
from the vertical plane of the seismic line to maintain a normal reflection (required by 
zero offset) and to find the minimum traveltime (a condition of Fermat�s principle).   
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Figure 2.  Plan view of an oblique reflector showing zero-offset raypaths that are confined to 
vertical planes. 

If the angle of obliquity were zero, then all reflections would occur on the reflector 
below the vertical plane of the seismic line.  Consequently, the reflection point will 
behave as a conventional scatterpoint and produce the conventional shape of a 
diffraction, defined in time migration as  
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rmsV
xTT +=

, (2) 

where T is the two-way traveltime, T0 the vertical two-way traveltime from the 
reflector, and x the horizontal distance from the scatterpoint to the colocated source 
and receiver.   

When the angle of obliquity is not zero, the reflection point moves away from the 
seismic line, and the horizontal distance l from the reflection point to the colocated 
source and receiver becomes  

 
γcosxl =

, (3) 
giving a new diffraction shape defined by 
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the equation described by French (1975), and gives the migration velocity defined by 
equation (1). 

The migration of oblique reflectors is not obvious when processing data as the 
geometry of the subsurface is usually not known.  If it appears that a portion of the 
migrated section is under-migrated (i.e. the appearance of un-collapsed diffractions), 
then a number of migrated sections may be produced, each formed with an increase in 
the percentage of the RMS velocity.  The process of migrating with increased 
velocities continues until a satisfactory migrated image is obtained.  Software has 
been developed in which a small window (porthole) around the area of interest may 
be migrated in real time by sliding a velocity bar.  Once the optimum migrated image 
has been obtained, the RMS and migrated velocities can be used to estimate the 
magnitude of γ, the angle obliquity.  The actual sign of the angle is not determined, 
but a number of 2-D lines in the area may then be used to map these angles to 
estimate the location of the oblique reflector.  This method has been used successfully 
to map channel sands and faults.  In one processing case, a difficult area of a section 
with an apparent cycle skip, was migrated with a velocity of 3*Vrms, to produce a 
clear image of a fault, with an angle of obliquity of approximately 70 degrees.   

Figure 3 shows two migrations at 100% and 130% of the RMS velocities, where 
the RMS velocities were estimated using a DMO process.  The 100% image appears 
acceptable, however, when examining the 130% image, a fault (γ = 40 degrees) 
becomes evident in the center of the section.   

      
a)     b) 

Figure 3.  Two migrated images, a) with 100% Vrms and b) 130% Vrms. 

100% 130% 
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Note that modifying the migration velocities to image oblique reflections is only 
valid for that part of the section that contains the oblique reflections.  Other parts of 
the section will be over migrated.  A final migrated section may be formed with a cut 
and paste method that includes the oblique images with the original migration. 

The above discussion has been confined to stacked data that tends to approximate 
a zero-offset section.  The zero-offset approximations break down when the reflectors 
are dipping and or when the reflectors are oblique to the 2-D line.  The following 
discussion evaluates the shape of a prestack reflection from a horizontal oblique 
reflector, then evaluates the results of stacking for a poststack migration and 
formulates options for prestack migration. 

PRESTACK CONSIDERATIONS OF OBLIQUE REFLECTORS 
Consider a plan view of the oblique reflecting surface in Figure 4.  Note the 

location A where the seismic line and the oblique reflector intersect.  The CMP gather 
at A contains source-receiver locations identified by the square braces.  All raypaths 
will be symmetrical in the vertical plane below the seismic line with a reflector point 
that is located below A.  The moveout on the offset traces will appear to have a 
scatterpoint at A, and have the RMS velocities associated with an orthogonal 
reflector.   

Reflections from a CMP gather located at B will be considerably different from the 
reflections at A.  At B, the zero offset reflection has a migration velocity Vmig defined 
in equation (1).  Small offsets from B will have a reflection point that is very close to 
the zero offset point and will therefore have a geometry that is similar to zero offset 
and will have a moveout velocity close to Vmig.  For larger offsets, the reflector point 
will move along the reflector towards A.  The location of the reflection point was 
difficult to define and will be described in an appendix. 
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Figure 4.  Plan view of an oblique reflector showing zero-offset raypaths that are confined to 
vertical planes. 
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The prestack traveltime surface of reflections from an oblique reflector for CMP 
locations x and offsets defined by h is defined by equation (A10) of the appendix and 
is shown in Figure 5a.  This shape is similar to a Cheops pyramid (Figure 5b) for a 
scatterpoint at A (or a normal reflector).  Figure 5c contains a plot of both surfaces for 
comparison.  The prestack travel time surface defined by equation (A10) is the 
summation surface required for a prestack Kirchhoff migration. 
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c) 

Figure 5.  Prestack traveltime surface of a) an oblique reflector, b) Cheops pyramid, and c) a 
combined display. 

Note in Figure 5c the difference in the zero offset hyperbolas defined by Vrms for 
the scatterpoint, and Vmig for the oblique reflector.  It may also be assumed that the 
offset curvature through the peak are the same and have a moveout velocity Vrms.  The 
moveout with maximum displacement x can be observed at the left side of the figure.  
Note the Cheops pyramid moveout is quite flat (near zero offset) and requires a 
moveout velocity that is modified by the corresponding dip on the zero offset 
diffraction.  The moveout on the oblique reflector surface (ORS) appears more 
hyperbolic with a lower velocity.  Many attempts were made to approximate the ORS 
including a Taylor series expansion about h.  Some of these results are contained in 
the appendix, but the two simplest surfaces, using stacking velocities of Vrms and 
Vrms/cos(γ) are shown below in Figure 6. 

Figure 6a shows the stacking surface of conventional processing that uses Vrms for 
conventional NMO correction (along with the defined ORS identified with the 
arrow).  This surface is defined by equation (5), 
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The first two terms on the right-hand side of equation (5) that involve T0 and x define 
the zero-offset time as a function of x.  The third term involving h is the conventional 
moveout term.  Note the curvature on the left side of Figure 6a is too low. 

Equation (6) uses the oblique angle γ to modify the moveout velocity and is shown 
in Figure 7b.   
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. (6) 

Now the velocity match on the left side of Figure 6b is much better as predicted 
earlier.  However, when the back of Figure 6b is viewed in Figure 6d, the zero 
displacement velocity (x=0) is in error. 
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c)     d) 

 

Figure 6.  Combined plots of the oblique reflector surface with a) conventional moveout, and 
b) with moveout velocities using Vmig defined in equation (1).  The rear view of (a) and (b) are 
shown in parts (c) and (d) respectively. 
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COMMENTS AND CONCLUSIONS 
1. Prestack migration of oblique reflectors can be accomplished with a 

summation surface defined by equation (A10) and converted to time using 
the RMS velocity. 

2. The maximum offset used in the figures assumes an offset h four times the 
depth of the reflector.  This offset is quite large for conventional 
processing.  Typical processing may limit the offsets to be comparable to 
the depth of the reflector.  The maximum migration displacement x is also 
quite large and corresponds to migration dips up to 75 degrees. 

3. Stacking oblique reflection data with conventional moveout velocities Vrms 
will produce a diffraction that is only focussed near the apex.  The larger 
displacements (x) of the diffraction will not be focussed.   

4. Use of a stacking velocity Vmig that is modified for the obliquity reflector 
will produce a diffraction that is focussed on the flanks of the diffraction, 
but will not focus at the apex. 

5. The above discussion has assumed that the oblique reflector is linear, 
possibly from a fault.  However, if the reflector is not linear, such as that 
from a buried river channel, then only that part of the reflector close to the 
seismic line (or small offsets) should be used.  In this case, use of the 
conventional Vrms velocities may produce the best overall stack of the 
diffraction. 

6. More complex moveout functions, based on a Taylor series approximation 
to the oblique reflecting surface may be useful if small offsets of h are used 
(see appendix). 

REFERENCES 
French, W. S., 1975, Computer migration of oblique seismic reflection profiles, Geophysics, 40. 961-

980 
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APPENDIX 
The math for deriving the travel times from an oblique reflector is derived in this 

appendix.  A number of approaches were taken based on the physical geometry of the 
problem.  The only method that was successful was using Fermat�s principle that 
reduces to the raypath with minimum travel time.  The subsurface model used 
assumed a constant velocity of unity (V = 1) allowing the traveltimes to be estimated 
as distance.  The depth of the scatterpoint was located at a depth z = 1, with the 
maximum displacement and offset of x = h = 4.  The source location is defined by (xs, 
ys = 0, zs = 0), the receiver location by (xr, yr = 0, zr = 0), the reflection point on the 
oblique line (x, y, z), the angle of obliquity γ, and the relative slope of the reflector in 
the x-y plane is m=tan(γ-π/2). 

Given a source location defined by the displacement xs, and the offset h, the length 
of raypath ls to any point (x, y) on the oblique reflector is defined by equation (A1). 
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Figure A1.  Plan view of an oblique reflector showing offset raypaths. 
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1
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and the length of the receiver ray lr is 

 
( )[ ] 2

1
222 zyxxl rr ++−=

. (A2) 

The total length of the raypath l combines equations (A1) and (A2) to give the 
double square-root equation (A3), 
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Converting the y parameter in (A3) to x using the linear equation mxy =  we get 
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Taking the derivative of equation (A3) with respect to x and equating it to zero will 
define a value for x that gives the minimum length of the raypath.  i.e. 
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Solving this equation for x was difficult and MATHEMATICA was also unable to 
obtain a solution with the equation in this form.  The expression was put in the form 
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and each side squared so that it could then be rearranged to a quadratic function in x. 
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. (A8) 
Solving this gives two solutions, only one of which is correct.  (An invalid solution is 
introduced by squaring equation (A7).)  The correct solution for x is 
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The value for y is obtained from the linear equation y = mx.  Now the reflection 
point (x, y, z) is defined, and the value of x is then inserted into equation (A4) to give 
the length of the raypath.  This yields an expression for l = l(m,z,xr,xs).  A new 
expression for l is then obtained by substituting xs = x + h and xr = x � h, where x is 
now understood to be the offset (see the two definitions of x in Figure A1).  This 
results in the following expression: 
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A number of attempts were initiated to simplify this equation.  One of the more 
successful attempts was using MATHEMATICA to express l = l(m,z,x,h) as a power 
series in h.  Simplifying the result into a 4th order approximation gave the following 
result: 

 (A11) 
The 2nd order approximation from the above equation (A11) is plotted in Figure 

A2. 
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Figure A2.  Surface plot of 2nd order Taylor series expansion from equation (A10). 

The surface displayed in Figure A2 is definitely inferior to the simple surfaces 
using conventional NMO correction with Vrms and Vmig.  It should be noted that the 
initial MATHEMATICA Taylor series expansion filled approximately 30 pages.  Odd 
order terms would eventually simplify to zero, and the even order terms simplified to 
those given above. 


