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ABSTRACT 
A seismic survey was conducted on a Mayan pyramid ruin at Chan Chich, Belize, 

Central America in June, 2000. The purpose of this survey was to test whether a 
hammer seismic technique could propagate energy through the carbonate-rubble and 
mortar pyramid (30 m x 30 m at the base), and if this energy could be used to make 
images of the interior of the structure. To this end, ten 3-component geophones were 
planted, with 2 m spacing, on one side of the pyramid. Source points were acquired 
around the corner on an adjacent side of the pyramid at a 4 m spacing � giving a 
geometry like that of a VSP on its side. The sledge-hammer source was struck about 
20 times per shot point. We analyze the VSP-type dataset here by picking first-break 
arrivals from 60 seismic traces and performing a traveltime inversion to estimate the 
velocities inside the pyramid. Finally, a velocity contour map is given with resolution 
and reliability analysis. We find that the near-surface of the pyramid has velocities 
about 100~200 m/s while the interior has higher velocities (500 m/s to 700 m/s). 
There is evidence of a low velocity region amongst the higher velocity areas.  

INTRODUCTION 
In June 2000, a seismic survey on a Maya pyramid ruin was acquired in Belize, 

Central America at the Chan Chich archeological site. The carbonate rubble and 
mortar pyramid has rounded corners and a soft-soil surface covered by tropical 
jungle. The pyramid is about 30 m by 30 m at the base and stands some 18 m high. A 
unique seismic dataset was acquired: five hammer-seismic sources were located on 
one side of the pyramid, juxtaposed with ten 3-component geophones planted on the 
adjacent, perpendicular side. The 3-C receivers were spaced along a 2 m contour 
level, up from the base of the pyramid, and at a 2 m horizontal spacing. The shots 
were spaced a nominal 4 m on the perpendicular side. One shot (#6) is on the same 
side of the pyramid as the receivers, between receiver #1 and #2. This survey 
geometry is thus like a VSP on its side ( Figure 1). 
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Figure 1. Topographic contour map of the pyramid. The pyramid is about 30 m by 30 m at its 
base. Annotations are in meters. The survey geometry is overlain with blue dots indicating 
shots and red �x�s denoting geophone location. 

 

Sixty first-arrival time picks are made using the 6 shots and 10 receivers. We use 
these data, via a straightforward traveltime inversion, to estimate the velocity 
structure inside the pyramid. 

DATA ANALYSIS 
In viewing the raw three-component seismic data, we find that the vertical 

component shows good quality and consistent first breaks. Some reflections are 
visible, especially above 150 ms, with different apparent slopes (Figure 2). Channel 
#5 is dead and channel #1 is noisy. Unfortunately, the H1 component had 6 dead 
channels out of 10 geophones. The H2 component data has only one dead channel 
(#2), but it seems the quality is not as high as the vertical component. The right panel 
of Figure 2 shows the data with a 150 ms window AGC operator.  

We pick the first positive peak of every vertical component trace (blue dots on 
Figure 2 right), and also display the H1 and H2 sections. Due to unreliable or no data, 
interpolation is applied to pick the first break on channel #5 and #1. These times are 
listed in Table 2.  
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Figure 2. Display of Vertical (V), horizontal-X (H1) and horizontal-Y (H2) components shot 
gather of raw data (left panel) and after AGC (right panel). The first-break picks are shown on 
the AGC section.  

 

Table 1. Trace editing of the 3-C geophones. 

 Vertical H1 H2 
Dead trace # 5 1, 4, 5, 8, 9, 10 2 
Bad trace # 1 None None 

 

Table 2. The list of first break time picks (ms) from the vertical component data. 

 Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Shot 6 
R 1 52.97 47.15 39.43 36.18 27.64 12.03
R 2 52.18 51.59 44.26 38.88 31.38 16.32
R 3 54.76 54.36 47.03 44.26 33.56 23.31
R 4 55.20 53.97 47.36 44.85 36.28 25.73
R 5 56.70 56.06 50.20 47.43 39.90 32.96
R 6 58.53 57.42 52.58 50.01 43.66 43.07
R 7 60.31 58.53 54.17 51.99 46.44 46.64
R 8 59.32 57.93 53.77 52.58 47.03 46.83
R 9 63.88 62.09 58.92 57.53 51.39 52.98
R 10 63.88 62.88 59.91 59.12 53.77 53.97
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The hammer-seismic source produces a fairly broadband signal from about 5 Hz to 

155Hz. Figure 3 displays the amplitude spectrum of shot #1. The five other shots 
show similar spectra.  

 

Figure 3. Display of amplitude spectrum for shot #1. 

 

INVERSION AND ANALYSIS 

Inversion procedure  
We assume straight raypaths and thus cast the tomographic traveltime inversion as 

a system of 60 linear equations: 

∑ ⋅=
j

jiji sDt
 

where ti is total traveltime of ith shot-receiver pair, sj is slowness of jth grid, and  Dij is 
the distance of ith ray traveling in jth grid. Each shot-receiver pair builds one equation.  

Expressed in matrix form: 

t = D·s 

(1)

(2)



Seismic tomography of a Maya pyramid 

 CREWES Research Report � Volume 12 (2000)  

Defining the grid 
First, we need to determine how many bins or pixels there should be. To keep the 

problem overdetermined, the number should not exceed 60. If we set dx = dz = 4 m, 
there will be 7 rows and 6 columns, or a total of 42 pixels � about half of which will 
be intersected. So, we use 4 m by 4 m pixels. With same bin size, different origin 
positions result in different inversion systems. Figure 2 shows one type of grid, which 
x ranges (-3~21) m and y ranges (0~27) m. The matrix D has a somewhat different 
distribution if we shift the x coordinator, i.e. by 1 m to the right. 

 

Figure 4. Grid with x range (-3~21) m and bin size dx=dz=4m. Red (*) symbols represent shot 
points; blue (o) symbols denote receiver points. Bin index numbers are shown on the right. 

Calculating matrix D 
Given the coordinates of the shots and receivers, D is calculated. In this case, dx = 

dz = 4, the size of D is 60×42. The matrix D is defined when the grid is defined. 

To solve the model parameter sinv (slowness vector), two methods are used: 
singular value decomposition (SVD) and conjugate-gradient (CG). In SVD, the 
stabilization factor is 1.0e-6 in the following computation. 

MODEL AND REAL DATA 

Noise-free model 
Before considering the real data, we start from a constant velocity model to test the 

algorithm. We set the velocity vc = 500 m/s in every bin, so sc = 2 ms/m. Next the 
traveltimes t-test are calculated by D*sc , then the inversion is undertaken to get sinv . 
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We compare the inversion results sinv with the initial moel values sc, and the predicted 
data t-predict with original data t-test.   

The SVD method provides exact results for these noise-free data. After 20 
iterations, the conjugate-gradient method had still not converged, but had a residual of 
2.51e-05 . 

Adding noise 
We add random noise to t-test using RANDN*0.5 (this random vector has mean 

zero and variance 0.5). Comparing the value of t-test which range from 7 to 70, the 
systemic noise level is quite low.  

 

Figure 5. Comparison of noised traveltime from model of slowness = 2ms/m, inverted travel 
time by SVD method and noise. 

The times calculated from the inversion estimates fit the original data very well 
using the SVD method (Figure 5). The CG method was not as accurate. 

Real data: 
The t-test is replaced by the first-break times picked from the real data, then we 

obtained the following result: 
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There are several negative slowness values that are unphysical. Looking closely, 
although the CG method is still converging, most of the velocity values of the two 
methods are close. The final velocity 3-D bar map and contour map are shown in 
Figure 7. 

 

Fig. 6. Comparision of the observed first-break times and calculated times from inversion-
estimated slowness model. #52, which has the shortest shot-receiver distance, shows the 
biggest gap.  
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Fig. 7. Displays of the final velocity (m/s) maps calculated by the SVD method. A 3-D view is 
shown in the top chart. Below the chart are a color map of the velocities and contour map. A 
full color-contour map with annotated rays is displayed at the bottom of the Figure. 
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The modeled traveltimes fit the raw data reasonably well. The questions arise: 
How much can we trust the inversion result? How should we evaluate an inversion 
system, its resolution, and its error? The solution of the generalized inverse problem 
is less useful without some description of its uniqueness and reliability.  

RESOLUTION AND ERROR ANALYSIS 

For the linear equation, d = Gm, the exact inverse of  G = UΛΛΛΛVH, if it exists, can 
be written as G-1 = VΛΛΛΛ-1UH, where �H� indicates Hermitian transpose which means 
AH = (A*)T = (AT)*. Aki and Richards (1980) consider the so-called generalized 
inverse operator  

 Gg
-1 = VpΛΛΛΛpUp

H  (3) 
as an inverse operator to the operator  

 G = UpΛΛΛΛpVp
H  (4) 

U is composed of Up and U0, where Up consists of the eigenvectors with nonzero 
eigenvalues and U0 consists of the eigenvectors with zero eigenvalues. The same 
holds with V, Vp and V0. U0-space is the source of discrepancy between the observed 
data and the prediction by operator G. On the other hand, V0-space is the source of 
non-uniqueness in determining the model from the data. 

Because of orthogonality, Up
HUp = Vp

HVp = I, but when Up and Vp are no longer 
complete, UpUp

H ≠ I, VpVp
H ≠ I, Up and Vp are coupled through the nonzero 

eigenvalues.  

The resolution in model space is  

 mg = VpΛΛΛΛpUp
H UpΛΛΛΛpVp

H m = VpVp
Hm  (5) 

The resolution in data space is: 

 dg = GGg
-1d = UpUp

H d  (6) 
The reliability of the solution is measured by its covariance matrix.  

 < ∆mg ∆mg > = σd
2 Gg

-1Gg
-1 = σd

2 VpΛΛΛΛp
-2Vp  (7) 

The singular value decomposition of matrix D is performed in Matlab. There are 
42 model parameters in 60 equations, the size of D is 60×42. So, U is 60×42, ΛΛΛΛ is 
42×42 and V is 42×42. In the eigenvalue matrix Λ Λ Λ Λ (shown in Figure 8), the first 24 
diagonal elements are non-zero, 25~32 are very small numbers which range from 
level of 10-16 to 10-32, which are believed to be the computation errors due to machine 
resolution. Therefore, the number of non-zero eigenvalue (p) of this particular linear 
equation problem is 24, less than the number of model parameters, which tell us both 
V0 and U0 space exist.  
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In this case, Vp and Up is the matrix formed by the first 24 columns of V and U, 
respectively. So, Vp is 42×24, Up is 60×24. ΛΛΛΛp, matrix of 24×24, is the left upper part 
of ΛΛΛΛ.  

     

Fig. 8. 3D display of the eigenvalue matrix ΛΛΛΛ (right) and 2D display of its diagonal elements 
(left). 

Now, we calculate the resolution matrix in model space. Based on equation (5), the 
resolution matrix VpVp

H is shown in Figure 9. It is observed that the diagonal 
elements are only two values: 1 and 0. Back to Figure 2, the 42 model parameters 
correspond to the 42 bins. The bin with diagonal element value of 0 in the resolution 
matrix is the one that has no raypaths in it. The resolution matrix successfully 
separates the model parameters into two groups, with contribution to data 
(corresponding to non-zero eigenvalues) and without contribution to data 
(corresponding to zero eigenvalues). Through this figure, we know that there are 24 
model parameters that can be solved and which bins they are. However, what we 
don�t know is how much we can trust the solved 24 parameters.  

      

Fig. 9. 3D display of the model space resolution matrix VpVp
H (right) and 2D display of its 

diagonal elements (left). 
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The next step is to compute the resolution matrix UpUp
H in data space, which point 

to the discrepancy between the observed and predicted data. It is more complex than 
the model space resolution matrix (Figure 10). In the 60 diagonal elements, the 
observed trend is that the data with longer travel distance usually have higher 
covariance level, i.e., the tenth receiver is nearly highest in each shot group. Notice 
the lowest value is at trace 52, the pair of 6th shot and 2nd receiver, which has the 
shortest distance. The higher, the better.  

  

Fig. 10. 3D display of the data space resolution matrix UpUp
H (right) and 2D display of its 

diagonal elements (left). 

Finally, we should calculate the covariance of the solution. The error of model 
space is associated with the error of the data space. What we calculate is the weights 
matrix of data variance in equation (7) based on the assumption of data have same 
σd

2. This weighting factor is like an amplifier. So, the lower, the better (Figure 11). 
We set a certain value as the acceptable reliability level, model parameters higher 
than this level are thought to be unreliable, and those lower are reliable. In this 
example, if we set 6.5 as the threshold value, the weights in bin #2, #22, #27 are 
higher than 6.5, which indicates the inversed slowness in these three bins are not 
reliable. Looking back at Figure 2, the bins marked with �P� are those three. We see 
only 1~3 raypaths go through these bins and there are no crossing points, that�s the 
reason they have lower reliability.  

What about the effect of Marquardt factor, or stable factor ε to the resolution? It 
will change the absolute value of the elements in the resolution matrix. The bigger the 
ε is, the lower the weight. The function of ε is to smooth the model error, make it 
more reliable. However, the relative position of each diagonal element is fixed. In 
other words, if we draw a line to connect the value of diagonal elements of the 
resolution weights matrix, the shape of this curve will keep similar whatever ε is. 
When we choose a suitable threshold, the same 3 bins are still above the level.  
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Fig. 11. 3D display of the reliability matrix UpUp
H (right) and 2D display of its diagonal 

elements (left). 

DISCUSSION 
The resolution of model space and data space are calculated through the non-zero 

eigenvectors of vi and ui, i = 1,�, p.  

The conjugate-gradient method starts from setting all the model parameters to 0. 
Slow or non-convergence can happen whenever the initial estimate of the model is 
poor (Lines and Treitel, 1984). This may be the reason that the CG method is not 
convergent after 20 iterations in our case.  

Based on the assumption of straight-line raypath and the fact that one non-zero 
eigenvalue corresponds to one bin which does contain a part of the raypath, we can 
find all the bins with contribution to data when the grid origin, grid size and the 
locations of shots and receivers are defined. Those bins that don�t contain raypaths 
correspond to the zero-eigenvalues, and should be kept out of the computation.  

If we only keep the non-zero eigenvalues in ΛΛΛΛ, or ΛΛΛΛp, the ΛΛΛΛp
-1 will always exist. 

For small inversion problem, like this case, we can just use Vp, Up and ΛΛΛΛp to get the 
inversion result. But when the number of model parameters increases, to several 
thousand say, the exact analytic method becomes very time-consuming. Then the 
conjugate-gradient method will show an advantage over the SVD method. 

The above discussion is based on the grid bd: How should it be defined? What is 
an optimal grid? Can we determine this by some sort of mathematical expression? 
Because the source offset of this VSP-like geometry is limited, the coverage angle is 
not wide enough to detect the center of the pyramid, a further full-angle tomographic 
survey (cross-well VSP style) is recommended.  
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CONCLUSIONS 
A seismic tomographic data set of traveltimes from around a Maya pyramid is 

analyzed. Using singular value decomposition we solve for velocity structure in an 
inversion based on the straight raypaths.  

The inversion result is made more complete with uniqueness, resolution and 
reliability analysis. The velocity profile shows that at the surface velocity is about 
100~200 m/s, and the inner part has higher velocity about 500 m/s, even 700 m/s 
somewhere. There is a lower velocity area between the two high velocity peaks.  

ACKNOWLEDGEMENTS 
We are grateful to the Chan Chich Lodge, Belize for allowing collection of these 

data. In particular, Dr. B. Houk, archeologist at the Chan Chich site and Dr. Jaime 
Ava of the Department of Archeology, Government of Belize. Dr. Fred Valdez, Jr. 
University of Texas at Austin and Dr. Leslie Shaw of Bowdoin College, Maine 
provided much-appreciated field support. Dr. Claire Allum, Mr. Adam Jagihch, and 
Ms. Stacie Stasko ably assisted in data acquisition. Mssrs. Eric Gallant and Henry 
Bland of the CREWES Project, University of Calgary kindly assisted with the seismic 
equipment, logistics, and data handling. 

REFERENCES 
Aki, K. and Richards, P., 1980, Quantitative Seismology � Theory and Methods: W.H. Freeman Co., 

vol. 2. 
Lines, L.R. and Treitel, S., 1984, Tutorial: A review of least-squares inversion and its application to 

geophysical problems, Geophysical Prospecting 32, 159-186. 


