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Charles P. Ursenbach 

ABSTRACT 
Gardner’s relation is extended to include dependence on both shear and 

compressional velocity.  Data for fitting are generated from work on Gardner-type 
relations by Wang (2000).  It is found that a single relation of this form can 
reasonably represent several lithologies. 

INTRODUCTION 

Gardner's relation (ρ = Cα1/4, ρ = density, α = compressional velocity) has been 
widely used as a means of providing approximate densities or compressional 
velocities, when one was available and the other not (Gardner et al., 1974).  Other 
empirical forms for a density-velocity relation are possible, such as Birch's Law and 
Lindseth's relation.  One of the advantages of Gardner's form however is in its 
application to AVO, as demonstrated by Smith and Gidlow (1987).  In traditional 
AVO one uses information on P-P reflection coefficients as input to an inversion 
process that yields ∆ρ/ρ, ∆α/α, and ∆β/β as output (β = shear velocity, and ∆x/x is the 
difference x divided by the average of x across an interface).  This procedure is 
strongly stabilized by reducing the number of output variables from three to two.  
One way to accomplish this for linear inversion is by substituting for the density 
contrast with a relation of the form 

 21 cc +∆=∆
α
α

ρ
ρ . (1) 

Integrating this yields 

 321 lnln ccc ++= ααρ  (2) 

or 

 ααρ 21
3

cc ec=  (3) 

This is exactly the form of Gardner's relation, with c1 = ¼ and c2 = 0, and the 
substitution of Equation (1) is precisely what Smith and Gidlow proposed.  Such a 
simple manipulation is not possible with other empirical density-velocity relations. 

There are a variety of changes one could propose and still retain the essential form 
of Gardner's relation.  Castagna et al. (1993) for instance proposed a set of lithology 
specific relations.  Work by Dey and Stewart (1997), Potter and Stewart (1998), and 
Potter (1999) has used Blackfoot log data to develop ρ-β relations.  More recently, 
Wang (2000) has used laboratory data to develop ρ-α and ρ-β relations for six 
different lithologies, for both gas- and water-saturation. 
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Dey (2001) noted the possibility of developing an empirical relation involving all 
three variables.  We reason here that because of the greater flexibility in fitting 
permitted by use of an additional variable, this method may have the ability to 
represent multiple lithologies with accuracy, using only a single expression.  
Individual lithologies have well-defined relations between α and β (see, for instance, 
Mavko et al., Section 7.8), so it is hoped that fitting ρ to both α and β will allow the 
α-β relations to be incorporated implicitly into a generalized Gardner relation. 

One use of such a relation would be to predict shear velocity logs from the more 
commonly obtained density and sonic logs.  When lithology is know, α-β relations 
are generally used to predict β from α.  However if lithology is not known, a single 
lithology-independent β(ρ,α) relation would be very useful.  Another potential 
application, given the appropriate functional form, is an analogy to the Smith-Gidlow 
AVO method.  In this paper we propose a function of the form: 

 BAC βαρ =  (4) 

which yields the relation 

 
β
β

α
α

ρ
ρ dBdAd += . (5) 

The potential use of Equation (5) in AVO is explored elsewhere in this volume 
(Ursenbach and Stewart, 2001). 

METHOD & RESULTS 
We develop an empirical expression of the form of Equation (4) using Wang’s 

empirical lithology-specific expressions as input.  Gardner’s relation is intended to 
describe water-saturated rocks, so we use the water saturation version of Wang’s 
equations.  First, for each lithology, we generate a set of densities in a range normal 
for that lithology.  The ranges actually employed are shown in Table I: 

Table I. Ranges of densities values employed for generating input data for each lithology 

Lithology Dolomite Limestone Sandstone Shaley 
Sandstone 

Unconsol. 
Sandstone 

Shale 

Density 
Range 
(g/cm3) 

2.45-2.85 1.85-2.75 2.10-2.60 2.05-2.55 2.05-2.30 2.30-2.70 

 

From these density values we employ Wang’s equations [Equations (6) and (7) from 
his paper] to generate values of α and β.  These are of the form α = c ρd, which is 
simply a rearrangement of Gardner’s relation, and similarly β = c ρd.  We then fit the 
resulting (ρ,α,β) triples from all lithologies to the expression 
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 βαρ lnlnlnln BAC ++=  (6) 

to obtain A, B, and lnC.  For units of g/cm3 and km/s, this yields  A = −0.091, B = 
0.319, and C = 2.10. 

These are not our final suggested results however.  A test was carried out to see 
how well α and β predicted by Wang’s equations satisfy extant α-β relations (Mavko 
et al., 1998, Sec. 7.8).  In fact they deviate somewhat, as illustrated for dolomite in 
the figure below: 

 

FIG. 1.  Values of β/α predicted by Wang’s equations compared to α-β relation from Mavko et 
al., Sec. 7.8. 

There is generally much less data scatter about a best-fit α-β relation than about a 
best-fit ρ-α or ρ-β relation.  Thus it seems important to constrain the fitting to satisfy 
the α-β relations.  To accomplish this we weighted the data by creating additional 
points.  The first way this was done was as follows.  For each (ρ,α,β) in the data set, 
we also included (ρ, aβ+b, cα+d), where (a,b,c,d) are appropriate constants obtained 
from the α-β relations.  After including these points in the fit we obtained A = 0.103, 
B = 0.146, and C = 1.83 using 1000 density points for each lithology.  The correlation 
coefficient had a value of 0.83.  The sum of A and B is 0.249, very close to the ¼ 
exponent of Gardner’s relation.  It is reasonable that they are of similar size, but 
likely a coincidence that they are so nearly identical.  C is also of similar magnitude 
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to the corresponding constant in Gardner’s relation, which is 1.741 (for units of g/cm3 

and km/s). 

A visual representation of the fit is presented in Figure 2 below.  Density is plotted 
against shear and compressional velocity in the following way.  The horizontal and 
vertical axes represent α and β respectively.  For each data triple, the density is 
plotted at the appropriate location as a short line, whose angle with the horizontal 
represents the magnitude of the density.  A horizontal line represents the minimum 
density in Table I, and a vertical line represents the maximum density.  The black 
lines represent input triples, and the lighter lines over top represent the density 
predicted by Equation (4) after fitting.  For each (α,β) pair, the input and output ρ 
values cross over at their midpoints.  For a very good fit the lighter line eclipses the 
black line.  The displayed results employed 5 density points for each lithology, so the 
fitting results differ slightly from those given above.  One observes a few results that 
are noticeably less satisfactory than others.  These correspond to low densities in the 
limestone lithology.  In general though, this appears to be a reasonable method for 
fitting data from several lithologies 

 

 

FIG. 2. Comparison of fitted density to input density. The density for a given (VP=α, VS=β) pair 
is given by the angle of the line with respect to the horizontal (horizontal = minimum density in 
range, vertical = maximum density).  The black lines represent the original input densities, 
from which α and β were predicted by Wang’s Equations (6) and (7).  This data was then fit to 
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Equation (4), and the values of ρ predicted by the fit of Equation (4) for the same (α, β) pairs 
are given by the lighter colored line on top of the black line. 

A second method for including extra points was to replace each (ρ,α,β) with 
(ρ,α,aα+b) and (ρ,cβ+d,β).  Fitting this data yielded A = 0.0799, B = 0.164, and C = 
1.87, again using 1000 density points for each lithology.  The correlation coefficient 
again had a value of 0.83, and plotting the result gave a result similar to that in Figure 
2.  The sum of A and B is 0.244, again close to ¼. 

Comparison with Gardner’s Relation 
To test the value of this result we compare it to three other relations.  The first is 

the original Gardner’s Relation, the second is Gardner’s relation with coefficients 
refit to the present data, and the third is a Gardner-type relation depending only on VS 
and not on VP.  The three expressions therefore are 

 ρ = 1.741 VP 
0.25   (Gardner’s relation) (7) 

 ρ = Ap VP 
Bp   (Gardner’s relation refit) (8) 

 ρ = As VP 
Bs   (Gardner-like VS relation) (9) 

A least-squares method is used to determine Ap, Bp, As, and Bs from the logarithmic 
version of Equations (8) and (9).  The fitting coefficients obtained are  Ap = 1.61, Bp 
= 0.278, As = 1.97, and Bs = 0.235.  For each of Equations (4), (7), (8), and (9), we 
then determine an goodness-of-fit function as 

 Goodness-of-fit = √ [ (1/N) Σ|ρinput − ρoutput| ] (10) 

where N is the number of points and Σ indicates a sum over all points.  The goodness 
values calculated are 0.119 g/cm3 for Equation (4), 0.154 g/cm3 for Equation (7), 
0.122 g/cm3 for Equation (8), 0.120 g/cm3 for Equation (9).  Thus Equation (4) is 
slightly superior to Equations (8) and Equation (9), indicating a strong correlation 
between VP and VS.   

CONCLUSIONS 

Gardner’s relation, ρ = 1.741 α1/4 (for ρ in g/cm3 and α in km/s), is generalized 
herein to ρ = C αA βB, where C is similar in size to 1.741 and A + B ≈ ¼.  This result 
is expected to be reasonably accurate for several water-saturated lithologies.  
Limestone appears to be the least well described.  This result would be useful both for 
predicting shear velocities and for substituting velocity contrasts for density contrasts 
in AVO inversion approximations. 
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