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ABSTRACT 
Discrete Radon transforms are often employed for the discrimination of reflections 

having parabolic or hyperbolic moveout, with no variation in amplitude with offset. 
The present work has tested the effects of data weighting and variants of the Radon 
transform for primary, multiple, and mode-converted reflections on a flat-lying 
model. Data weighting prior to the application of a Radon transform allowed for 
accurate identification of mode-converted reflections from other events. The pre- and 
postcritical energy from the mode-converted reflection was successfully separated in 
the Radon domain through application of a multiple-hyperbolic and a fourth-order 
nonhyperbolic Radon transform on separate near- and far-offset panels. Focusing of 
events in the Radon domain was maximized when we used a t2-stretched parabolic 
transform or a fourth-order nonhyperbolic transform tuned for mode-converted 
reflections. Additional work is necessary to improve the robustness of the algorithms. 

INTRODUCTION 
The discrete Radon transform integrates data along curved surfaces in the time-

offset (t-x) domain in order to transform parabolic or hyperbolic events into points in 
the Radon domain. The Radon transform is typically employed in the suppression of 
random noise, interpolation for missing traces, and removal of coherent events (e.g. 
ground roll and multiples). After implementation of a Radon transform, a better 
estimate of stacking velocities can often be obtained. Unfortunately, muting in the 
Radon domain can alter near-offset amplitudes in primary events, effecting AVO 
analysis (Kabir and Marfurt, 1999). Smearing and defocusing of events in the Radon 
domain can be due to assuming events maintain a parabolic or hyperbolic shape. 
Furthermore, the nonuniqueness of the inverse transforms leads to discrepancies in 
the transformed and original data sets. 

Thorson and Claerbout (1985) describe some implicit assumptions made in using 
the Radon transform on regular data. A reflector on a CMP gather should have 
uniform amplitude and vary smoothly in moveout from trace to trace for the Radon 
transform to be able to effectively focus the event. Specifically, the traces on the 
gather must be free of static shifts and be balanced in amplitude. In order to avoid 
problems due to violating these assumptions, the data should be preconditioned prior 
to Radon analysis to remove dip, static problems, and even amplitude variations with 
offset. Part of this work aims to provide a data preconditioning method for 
discriminating coherent events based on amplitude variations in offset. The method 
proposed involves offset weighting of the data prior to application of the Radon 
transform. In addition, separate Radon transforms are applied to the near and far 
offsets independently to compare effects of a phase change at the critical angle. 

Four Radon transform variants are used to isolate reflections, including: the 
parabolic, the t2-stretched parabolic, the multiple-hyperbolic, and the fourth-order 
nonhyperbolic transforms. The transforms were applied in a discrete Radon 
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algorithm. It is important to note that better focusing and resolution is expected from 
a generalized high-resolution algorithm, such as that proposed by Sacchi and Ulrych 
(1995), and future work will employ such a method. 

The model used in data analysis includes a base-of-salt primary reflection, a salt-
bed multiple, and a salt-bed PSSP mode-converted reflection. In typical marine 
surveys over salt, long offsets are required for imaging subsalt reflectors. Using a 
typical hyperbolic transform for summation of reflectors may involve an inadequate 
approximation for nonhyperbolic long-offset data, causing amplitude smearing in the 
Radon domain. Taner and Koehler (1969) and Castle (1994) described a recursive 
equation for nth-order approximations of the NMO equation. Carlson (1997) 
employed the fourth-order equation for NMO correction of long-offset data. In this 
work, the fourth-order NMO equation for the Radon transformation is utilized for 
focusing of nonhyperbolic, long-offset data.  

METHODS 

Discrete Radon transform  
The formulation of the discrete Radon transform used in this work follows the 

least-squares technique described by Foster and Mosher (1992). The Radon 
transform, φ , is given as: 

 
max

min

( , ) ( , ) ,
x

x

p x t dxφ τ ψ= ∫ !
 (1) 

 

where ( , ')x tψ represents the data in the time domain, p is slowness, τ  is the zero-
offset traveltime, and x is offset. The traveltime t

!
 represents the summation curves of 

the input data. The input time vector is t for typical parabolic curves and t2 for 
stretched parabolic and fourth-order nonhyperbolic curves. Slant stacks sum energy 
along lines represented by: t pxτ= + , while parabolic transforms sum along curves 
of 2t pxτ= + . The t2-stretched parabolic transform uses a traveltime input of 2t t=

!
, 

which makes hyperbolic reflections in the x-t domain approximately parabolic in the 
x-t2 domain. The stretched transform sums along 2 2 2 2t p xτ= +  parabolic curves in 
the x-t2 domain (Yilmaz, 1989). Foster and Mosher (1992) presented a traveltime 

curve for summing hyperbolic multiple reflections where ( )2 2( )kt p x z zτ= + + −  

is the path of summation, and z is a chosen depth to focus the multiple reflection. The 
fourth-order nonhyperbolic transform employs a fourth-order NMO function for the 
summation of reflections and is explained later in more detail.  

The integration of curved lines in the time domain is similar to the integration of 
phase shifts in the Fourier domain. A forward Fourier transform is applied to the data 
to facilitate integration. The transformed data is written as: 
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( ( , ) )( , ) ( , ) .
x

i t x p

x

p x e dxω τφ ω ψ ω −= ∫ ! !! !  (2) 
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When working with discrete data, it is easier to express (2) as a summation: 

 { }( ( , ) )

1
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N

i t x p
j k k

k
p x e x Nω τφ ω ψ ω −

=

= ∆∑ ! !! !  (3) 

 

Concisely put, the summation can be written in matrix form as: 
 

( ) ( ( )),j kp Rz t xω ωφ =
! !  

(4) 
 

where R
!

 is an M × N matrix with elements: 

 
{( ( , ) ) , 1,..., ; 1,..., ).k ji t x p

jk kR e x j M k Nω τ−= ∆ = =! !

 
(5) 

 

The Hermitian conjugate of R
!

, HR
!

, allows for a least-squares formula of φ , 
where 

 ( ) ( ( ))H
j kp RR Rz t xω ωφ  =  ! ! ! !

 (6) 
 

(Foster and Mosher, 1992). This method is solved independently for each frequency, 
and as a result, some smearing of amplitudes in the Fourier domain occurs.  

Fourth-order NMO equation 
Taner and Koehler (1969) give the following equation for traveltime: 
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In this work, we use the three-term expression in equation (7) for summation 
curves in the fourth-order hyperbolic Radon transform. The t0 and µ4 focusing 
parameters for a particular primary, multiple, or converted-wave reflection are 
extrapolated from the data set as input parameters. 
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DATA ANALYSIS 
One flat-layered 2-D model was used for Radon comparison and the parameters 

for the model are given in Table 1. The seismogram (Figure 1a) was generated using 
Norsar-2D modeling software, and automatic gain control (AGC) was applied using 
ProMAX© software. The Radon transforms were performed and analyzed using 
Matlab programs. The amplitude scale for each Radon-domain plot is labeled to the 
right of each diagram. 

Table 1: Parameters for model 

Layer P Velocity (m/s) S Velocity (m/s) Thickness (m)
1 1500 1000
2 2040 800
3 2160 800
4 4500 2600 1000  
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FIG. 1. (a) The CMP gather for the base-of-salt P-reflection (t0=3.3s), the salt-bed PSSP 
reflection (t0=3.63s), and salt-bed multiple (t0=3.75s) used in the analysis. (b) The parabolic 
Radon transform for the data. (c) and (d) The offset-weighted and offset-squared-weighted 
parabolic Radon transforms of the data, respectively.  

The application of the parabolic Radon transform to the unweighted data is shown 
in Figure 1b. Each event is distinctly separated, although limited aperture of far 
offsets causes increased smearing of energy diagonally from the bottom left to the top 
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right of the diagram (Figure 1b) (while near-offset horizontal smearing is reduced). A 
far-offset taper may be applied to the data prior to the transform to reduce the 
diagonal smearing caused by limited aperture (Kabir and Marfurt, 1999). The 
parabolic transforms of the offset-weighted and offset-squared-weighted data are 
depicted in Figures 1c and d. By placing more importance on far offsets with 
weighting, multiple energy is suppressed while the converted energy is enhanced. 
Unlike multiple or primary events, PSSP mode-converted energy increases in 
amplitude with offset. The diagrams indicate that offset weighting can provide a 
discriminator for detecting converted energy from primary and especially multiple 
events on a CMP gather. The actual focusing power of data weighting is difficult to 
determine due to the low resolution of the least-squares transform. 
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FIG. 2. (a) The hyperbolic multiple Radon transform was applied to the original data set and 
(b) to the offset-squared weighted data. 

Foster and Mosher�s (1992) hyperbolic Radon transform for multiples was 
applied to the data and offset-squared data in Figures 2a and b. The transform creates 
�smiles� at the focusing points for reflections, indicating an inaccurate approximation 
and overcorrection of events. A significant quality of the transform is its ability to 
separate near-offset energy from that of far offsets for the converted-wave reflection 
in Figure 2a. Although smearing is a factor, the near-offset energy is focused on the 
slowness axis at about 0.00026 s/m and the far-offset energy focuses around 0.00030 
s/m. 

The fourth-order hyperbolic equation was used in the transform of data in Figures 
3a, b, and c. The t0 and µ4 focusing parameters for the reflectors were estimated from 
the data. The focusing parameters for the primary event focused the primary and 
multiple events, while leaving the energy from the converted-wave diminished in the 
Radon domain (Figure 3a). Good focusing and reduced smearing was observed for all 
events when using the parameters for the converted-wave event (Figure 3b). 

The parameters for the multiple event caused smearing of all events except for the 
multiple energy (Figure 3c). Figures 3a, b, and c (fourth-order hyperbolic) can be 
compared to Figure 3d (t2-stretched parabolic). The data stretching improved focusing 
of all events, in comparison with the result of the parabolic transform on unstretched 
data (Figure 1b). The focusing of events by the fourth-order hyperbolic transform 
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tuned for the converted-wave reflection (Figure 3b) appears to be comparable to that 
of the t2-stretched parabolic transformed data (Figure 3d). 
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FIG. 3. The fourth-order hyperbolic Radon transform was applied to the data. The parameters 
t0 and µ4 were estimated from the data: (a) for the primary reflection, (b) for the converted 
wave, and (c) for the multiple event. (d) The t2-stretched parabolic Radon transform was 
applied to the data. 

 

Figure 4 shows the result of applying the fourth-order hyperbolic Radon 
transform to near and far offsets separately. The data were separated at the 90° phase 
change at the critical angle for the converted-wave event. As a result, the focused 
converted-wave energy is of opposite polarity for each group of offsets. The primary 
and multiple energies are well focused in each panel, and do not show a similar phase 
change. The diagrams indicate this process has successfully separated energies from 
each phase rotation in the converted-wave reflection. 

DISCUSSION 
Kabir and Marfurt (1999) show that tapering near offsets prior to transformation 

increases smearing in the Radon domain, while tapering far offsets has the opposite 
effect. Contrary to what might be expected, applying offset weighting does not 
increase smearing on the near offset data, as indicated by a lack of horizontal 
smearing on the focusing events in the Radon domain (Figures 1c and 1d). The 
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FIG. 4. Fourth-order hyperbolic Radon transform applied to (a) 0- to 2750-m offset (precritical 
for converted-wave) and (b) 2750- to 5000-m offset (converted-wave postcritical offsets). 

 

increase in diagonal smearing from far offsets may be corrected by applying a taper 
on the far offsets only. The method of weighting allowed for discrimination of each 
type of energy analyzed and might prove advantageous for designing substantially 
more accurate mutes for the removal of unwanted energy. 

The nonhyperbolic nature of mode-converted energy typically allows for far-
offset amplitudes to be diminished by stacking alone. The removal of near-offset 
converted-wave events plus stacking may be a sufficient technique for diminishing 
converted-wave energy. In this case, applying the Radon transform only to near 
offsets with lower p-values would reduce computation time and expense of the 
algorithm. Alternatively, employing the multiple-hyperbolic transform may allow for 
a similar type of energy-partitioning removal. Results revealed efficient separation of 
near- and far-offset focused events in the multiple-hyperbolic Radon domain, 
although smearing due to limited-aperture data was prominent. The disadvantage of 
this method is that it is tuned for a certain focusing depth, and may be expensive for 
effective application to entire data sets. 

The t2-stretched parabolic transform produced well focused events in the Radon 
domain and may be the least expensive algorithm to apply to data. However, 
stretching and unstretching may degrade the data by introducing further aliasing 
effects, and this must be considered when applying the method to real data. Although 
the fourth-order NMO equation also relies on a stretched data input, results obtained 
after application showed enhanced focusing of events, and aliasing does not appear to 
be a damaging factor for the model. The fourth-order equation requires extra 
parameters that must be adjusted for a specific event, thus increasing the expense of 
the algorithm. Introducing a �fudge� factor relating µ2 (slowness2) to µ4 and t0 may 
provide an alternative to tuning in this method.  

Further testing of the effects of these algorithms on different models is necessary 
to prove the results implied by these tests. In addition to what has been presented in 
this work, all of the transforms can be applied before and after NMO or prestack 
depth migration for better removal of coherent energy and more accurate velocity 
analysis. 
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CONCLUSIONS 
Weighting of the data can provide a method of discrimination of coherent noise 

from primary events. The t2-stretched parabolic transform produced accurate focusing 
of all events and might be the most robust algorithm available for separation of 
coherent events. Variations of the fourth-order nonhyperbolic and multiple-
hyperbolic transforms may have increased focusing power for events but currently 
involve extra parameters that must be tuned for specific reflections. Future efforts 
involving modifications of these transforms have the potential to make them more 
robust to use on entire data sets. 

FUTURE WORK 
Assuming that the AVO responses of reflections are unknown makes the problem 

of precise focusing in the Radon domain too ill posed to allow application of a 
weighting to account for these effects in a robust way. As an alternative, a weighting 
function applied within the Radon operator may have better success. This method will 
be investigated to create an iterative process of tuning constants A and B of the 
function A + Bx2 in the linear operator.  

Castle (1994) described various traveltime equations and concluded the shifted-
hyperbola equation is the most practical NMO equation. He showed that for long 
offsets (offset > depth) the shifted hyperbola resembles the actual ray-traced response 
better than the standard Dix equation. We are currently exploring implementation of a 
shifted-hyperbolic transform with �fudge� factors to avoid the need to tune for 
specific events. We are also testing application of these transforms in the high-
resolution Radon algorithm. 
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