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Extending AVO inversion techniques 

Charles P. Ursenbach and Robert R. Stewart 

ABSTRACT 
A software tool is introduced for assessment of AVO inversion techniques.  It 

employs synthetic offset gathers with spike wavelets and models a wide distribution 
of earth parameters for each lithology.  It is used to demonstrate that a wide range of 
values that can be obtained for a given lithology, and to obtain the limits of accuracy 
available for two-parameter inversions based on the Aki-Richards approximation.  
The method of Fatti et al. (1994) is shown to be an improvement on that of Smith and 
Gidlow (1987).  A Full Offset method is introduced and shown to be superior to that 
of Fatti et al.  A generalized Gardner relation is also introduced and applied.  It does 
not yield improved inversion results for P- and S-wave changes, but can be employed 
to develop new density inversion techniques.  The results show promise for the 
development of a linear density inversion method. 

INTRODUCTION 

In principle, linear AVO inversion can yield three parameters, ∆α/α, ∆β/β, and 
∆ρ/ρ, where α is the P-wave velocity, β is the S-wave velocity, and ρ is the density. 
These parameters represent the difference in properties between adjoining earth 
layers, divided by the average across the two layers. The linear inversion is based on 
the Aki-Richards approximation (Aki and Richards, 1980) to the P-P reflection 
coefficient (RPP), which can be written as  
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where A = ½ ( 1 − 4 (β/α)2sin2θ ), B = ½ ( 1 + tan2θ ), C = − 4 (β/α)2sin2θ, and θ is 
the average of the angle of incidence and the angle of P-P transmission.  In the case of 
joint inversion (Stewart, 1990) one also employs the converted wave reflection 
coefficient (RPS), which in the Aki-Richards approximation is given as 
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and ϕ is the average of P-S reflection and transmission angles.  Given experimentally 
measured values of RPP (and RPS for joint inversion) at several offsets (or values of θ), 



Ursenbach and Stewart 

432 CREWES Research Report — Volume 13 (2001)  

one can use a least-squares approach to optimize values of ∆α/α, ∆β/β, and ∆ρ/ρ, 
which may be called the α or P-wave contrast, the β or S-wave contrast, and the ρ or 
density contrast, respectively. In practice it is difficult to obtain accurate estimates of 
all three values, and a more realistic objective is to manipulate the equations so that 
one only solves for two parameters.  One well-known approach is that of Smith and 
Gidlow (1987) who invoke Gardner’s relation (Gardner et al., 1974) in differential 
form to replace ∆ρ/ρ with ∆α/α: 

 4/1αρ F=      (Gardner’s Relation) (5) 

 ααρ dFd 4/3

4
1 −=    (differential form) (6) 
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Thus ∆ρ/ρ can be replaced by ¼ ∆α/α, and one solves for just ∆α/α and ∆β/β.   
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There are of course other density-velocity relations, such as those by Birch (1961) 
and Lindseth (1979), but they do not lead to a simple substitution such as Equation 
(7). 

Another approach is that of Fatti et al. (1994), who group ∆ρ/ρ terms together with 
∆α/α and ∆β/β terms to generate an expression of the form 

 
ρ
ρ∆−−++= )( BACBIAIR SPPP  (9) 

where IP = ∆ρ/ρ + ∆α/α and IS = ∆ρ/ρ + ∆β/β, the zero-offset impedances for P- and 
S-waves.  The coefficient of the remaining ∆ρ/ρ term is of second order in sin(θ) (or 
of fourth order if one assumes VP/VS = 2) and is discarded.  This leaves two variables 
for which to solve. 

Smith-Gidlow and Fatti et al. are both approximations to the Aki-Richards 
approximation, and comparing them to the Aki-Richards RPP shows them to be 
complementary in behaviour, as illustrated in Figure 1 below.  Fatti et al. give an 
approximation that is exact at zero-offset, but poor at large angles.  Smith-Gidlow on 
the other hand is not exact even at zero-offset, but can be of reasonable accuracy at 
large angles. 
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FIG. 1.  A screen capture from the CREWES Reflectivity Explorer illustrating the contrasting 
behavior of the Smith-Gidlow and Fatti et al. approximations to the Aki-Richards theory for 
small and large angles of incidence. 

For this report we have developed a simple tool for testing the viability of various 
approximations in the context of AVO inversion at reservoir tops.  This has been 
implemented in an interactive Java applet.  It will be used to explore several AVO 
inversion methods.  To begin we will consider the fundamental Aki-Richards 
approximation, and then the Smith-Gidlow and Fatti et al. approaches.  Then we will 
consider some new ideas.  First we will consider a method to combine the strengths of 
both the Smith-Gidlow and Fatti et al. approaches, which we will refer to as the Full 
Offset method.  Second we will consider a more general Gardner’s relation involving 
VS, which may be employed in the Smith-Gidlow procedure in place of the standard 
Gardner’s relation to yield an approximation we will refer to as Smith-Gidlow(VS).    
The Full Offset method also employs Gardner’s relation, so we can also consider a 
Full Offset (VS) approximation.  In addition, a Gardner’s relation involving VS will 
allow us to replace ∆β/β instead of ∆ρ/ρ in Equation (1), and to invert for ∆α/α and 
∆ρ/ρ instead of for ∆α/α and ∆β/β.  We will refer to this as the α-ρ approximation.  
We also consider an analogous β-ρ approximation.  Together these studies will 
permit us to present a number of conclusions regarding AVO inversion methods. 

THEORY 
In this section we outline the new approximations we wish to test. 

The Full Offset Approximation 
The first step in this method is to carry out the Fatti et al. approximation of 

Equation (9), but without discarding the ∆ρ/ρ term.  Instead we write 
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where we have invoked Equation (7) (Gardner’s relation) in the second step.  This 
allows us to replace ∆ρ/ρ in Equation (9) with IP. We refer to the resulting 
approximation as Full Offset.  

This method is exact at the zero-offset (as is Fatti et al.), but is expected to be 
reasonably accurate at large offsets (as is Smith-Gidlow) since no terms have been 
discarded. 

Generalized Gardner’s Relation 
Previous workers have demonstrated the feasibility of a Gardner-like 

approximation involving β instead of α (Dey and Stewart, 1997; Potter and Stewart, 
1998; Potter, 1999).  Ursenbach (2001) develops a generalized version of Gardner’s 
relation of the form 

 JHG βαρ =  (11) 

In differential form this is 

 )( 11 ββααβαρ dJdHGd JHJH −− +=  (12) 

which, combined with Equation (11), yields the relation 
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This can be used in the Smith-Gidlow approximation instead of the regular 
Gardner’s relation to replace ∆ρ/ρ with ∆α/α and ∆β/β:   
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We refer to this approximation as Smith-Gidlow(VS). 

We could similarly use the generalized Gardner relation to obtain 
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Inverting for ∆∆∆∆ρρρρ/ρρρρ 
From Equation (1) and Equation (13) we obtain the expression 
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This relation cannot be obtained using Gardner’s relation alone, as it does not have 
any β dependence.  Similarly, from Equations (1), (13), and (15) we can obtain 
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It is not expected that these will all lead to practical inversion methods, but their 
analysis can provide useful information if one possesses a convenient evaluation 
technique.  This is the subject of the following section. 

EVALUATION METHOD 
One of the objectives of this project was to develop a software tool that would 

allow a convenient and rapid assessment of AVO inversion methods, particularly in 
the context of reservoir tops.  A Java applet was created based on the following 
procedure: 

1) Choose a cap rock and a reservoir rock.  A set of checkboxes is available for 
this. 

2) For each chosen lithology, create a statistical sampling of typical earth 
parameters (ρ, α, β).  The control panel permits the user to specify the number 
of samples desired.  Within the program each lithology is assigned a typical 
density range.  These are given in Table I below.  A set of densities is 
randomly generated from the density range.  The compressional velocity is 
then selected using Equation (6) from Wang (2000), which is a lithology-
specific equation of the form V = a ρb, a rearrangement of the Gardner form.  
A random component of ± 500 m/s is then added in order to mimic the actual 
scatter of experimental values (see Wang, 2000, Figure 3).  The shear velocity 
is then generated using VS / VP relations (Mavko, 1998, Section 7.8).  This time 
a random component of ± 100 m/s is added to mimic the scatter (see Mavko, 
1998, Figures 7.8.1-8).  The one exception to this procedure is for anhydrite, 
for which the pure mineral value is used for velocities.  This completes the 
selection of the earth parameter values. 
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3) For each earth parameter sample, evaluate the exact Zoeppritz RPP coefficient 
for a range of incident angles (0 to 30 degrees).  A very fine grid is employed 
(360 points).  This constitutes a synthetic offset gather with a spike wavelet.  
Fit the offset data to each approximation to be tested. For each approximation 
this yields two of the values ∆α/α, ∆β/β, ∆ρ/ρ, IP, and IS.  Compare these with 
the exact values and calculate percent errors. 

4) After performing step 3) for each earth parameter sample, average the percent 
errors over the ensemble to obtain a mean result for the given lithology. 

5) Display all results for the given lithology.  The results are displayed in two 
ways.  First they are displayed as simple averages, one for the percent error of 
each quantity obtained through inversion.  Second, they are displayed as a 
scatter plot of the percent error of the individual earth parameter results.   

It is convenient for the program to display individual %-errors logarithmically.  
For instance, the average results for the Smith-Gidlow approximation when the cap 
rock is shale and the reservoir is sandstone are %-error (∆α/α) = 39% and %-error 
(∆β/β) = 35%.  These appear to be rather large errors, but alone they do not tell the 
whole story, as is evident from the scatter plot: 

  

FIG. 2.  A logarithmic scatter plot of %-errors for ∆α/α and ∆β/β for a distribution of earth 
parameters typical of shale over sandstone. Inversion is by the Smith-Gidlow method using 
Castagna’s mudrock relation for VP/VS.  The grid outlines a scale extending from 1% error to 
1000% error in each dimension. 

From this we see that both ∆α/α and ∆β/β errors vary over a few orders of 
magnitude, from ~0.3% to ~100%.  This demonstrates both the necessity of using log 
plots, and more significantly the danger in trying to validate a method by reference to 
only one or a few case studies.  Another advantage of using scatter plots is that, for 
such a wide distribution, the average itself may vary somewhat from run to run, even 
for very large samples, because of the behaviour of a few very large numbers in the 
average.  The general shape of the scatter plot however will always be consistent, so 
that it can give, not only a more detailed, but also a more dependable view of a 
method’s inversion behaviour.  (In our results below we will normally report only 
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typical averages, but scatter plots may easily be reproduced with the Java utility, and 
one example of scatter plots is also given later in Figure 3.) 

Table 1. Ranges of densities values employed for generating input data for each lithology. 

Lithology Sandstone Anhydrite Shale Limestone Dolomite 

Density 
Range 
(g/cm3) 

2.10-2.60 2.96 2.30-2.70 1.85-2.75 2.45-2.85 

 

RESULTS 
We first consider the fundamental Aki-Richards approximation, then two 

established methods, Smith-Gidlow and Fatti et al., and then the new approximations 
introduced above.   

The Aki-Richards approximation 

The Aki-Richards expression, Equation (1), may be used as the basis for a three-
parameter inversion, but must be approximated further for a two-parameter inversion.  
However, in order to see the maximum amount of accuracy that can be obtained from 
a two-parameter inversion, we simply insert the exact value for one of the parameters 
and solve for the other two, e.g., 
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Table 2. Typical average %-errors of parameters predicted by the AVO Inversion Explorer 
using Equation (21) and its two analogues at five different reservoir top lithologies. 

Quantity 

(method) 

∆α/α 

(α-β, α-ρ) 

IP 

(α-ρ) 

∆β/β 

(α-β, β-ρ) 

IS 

(β-ρ) 

∆ρ/ρ 

(α-ρ, β-ρ) 

shale/sandstone 1.18, 8.83 2.28 6.24, 6.87 10.25 155, 18.4 

shale/limestone 0.95, 14.4 2.33 22.9, 23.8 41.1 258, 11.2 

shale/dolostone 0.41, 22.1 0.41 14.7, 14.7 11.4 376, 13.0 

anhydrite/limestone 0.81, 16.0 3.02 20.1, 21.1 141 14.6, 0.51 

anhydrite/dolostone 1.86, 58.1 4.99 40.1, 41.4 49.8 272, 8.64 

 



Ursenbach and Stewart 

438 CREWES Research Report — Volume 13 (2001)  

This of course is not intended as a practical method, as (∆ρ/ρ)exact is only available 
for synthetic data, but is designed only to assess the value of the Aki-Richards 
approximation as a starting point for other AVO inversion methods.  Equation (21) 
we refer to as the α-β method, and analogous expressions are obtained using 
(∆α/α)exact and (∆β/β)exact instead, which we call the β-ρ and α-ρ methods.  Average 
%-errors are contained in Table II below: 

We see that the Aki-Richards approximation provides an excellent basis for the 
prediction of ∆α/α from the α-β method.  It is predicted more poorly by the α-ρ 
method, but when combined with ∆ρ/ρ, it yields a satisfactory IP.  ∆β/β is not 
predicted as well, but the results are very consistent between α-β and β-ρ.  The 
prediction of IS from β-ρ is generally worse. The prediction of ∆ρ/ρ by α-ρ is 
extremely poor, but is reasonable (probably usable) by the β-ρ method.  For the 
anhydrite over dolomite it is excellent. 

These results indicate the maximum quality that we can expect from 
approximations to Equation (1). 

Smith-Gidlow and Fatti et al. 

The methods of Smith and Gidlow (1987) and Fatti et al. (1994) are important 
contributions that have been influential in developing the AVO method.  Their 
success however is based upon the results of a small number of case studies.  The 
advantage of the present study using simplified synthetics is that we may readily 
consider hundreds of cases in order to get a clearer idea of a method’s robustness.  In 
Table 3 below we present the average %-errors for these two theories, and compare 
them to the relevant Aki-Richards limits taken from Table 2.  

Table 3. Typical average %-errors of parameters predicted using the Smith-Gidlow and Fatti 
et al. methods, compared to Aki-Richards limits. 

Quantity 

(method) 

∆α/α 

(α-β, Smith-
Gidlow) 

IP 

(α-ρ, Fatti et 
al.) 

∆β/β 

(α-β, Smith-
Gidlow) 

IS 

(β-ρ, Fatti et 
al.) 

shale/sandstone 1.18, 38.8 2.28, 3.07 6.24, 35.1 10.25, 9.99 

shale/limestone 0.95, 39.2 2.33, 2.46 22.9, 113 41.1, 29.8 

shale/dolostone 0.41, 133 0.41, 0.31 14.7, 249 11.4, 14.5 

anhydrite/limestone 0.81, 130 3.02, 10.5 20.1, 168 141, 88.7 

anhydrite/limestone 
(0 to 50 degrees) 

0.80, 137 14.5, 82.5 20.4, 239 53.6, 143 

anhydrite/dolostone 1.86, 39.4 4.99, 1.60 40.1, 69.4 49.8, 48.5 
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Clearly, the Fatti et al. approach is much more successful than Smith-Gidlow in 
approaching the Aki-Richards limit.  In some cases it even surpasses it, but remains 
of the same order of magnitude, probably indicative of a fortuitous cancellation of 
errors.  The success of Fatti et al. should not be surprising as it is most accurate at 
small angles, and our chosen range is 0 to 30 degrees.  For comparison we have 
included additional data in Table 3 for a 0 to 50 degree inversion of 
anhydrite/limestone.  This lithology was chosen because it’s first critical angles are 
all greater than 50 degrees, while the first critical angles for the other four reservoir 
tops all start between 30 and 40 degrees.  In any case, we can see that Fatti et al. 
suffers substantially from the increased angle range, while Smith-Gidlow is only 
slightly affected.  Thus the results of this paper cannot be applied incautiously to very 
large offset AVO.  For typical pre-critical ranges though, the method of Fatti et al. 
definitely appears superior.   

It may appear surprising that Smith-Gidlow gives such large %-errors given its 
empirical success, but recall Figure 2 which displays the distribution of individual 
values on a logarithmic scale for the shale/sandstone lithology.  There certainly are 
cases when excellent results can be obtained by this method, but there is as yet no key 
to discerning when those will occur. 

The Full Offset Approximation 
The purpose of the Full Offset approximation was to combine the zero-offset 

accuracy of Fatti et al. with the large angle accuracy of Smith-Gidlow.  We present 
results for this method below, based on the combination of Equations (9) and (10) and 
compare them with Fatti et al. and with the Aki-Richards limit. 

 

Table 4. Typical average %-errors of parameters predicted using the Full Offset method, 
compared to the Aki-Richards limit and Fatti et al. 

Quantity 

(method) 

IP 

(α-ρ, Fatti et al., Full Offset) 

IS 

(β-ρ, Fatti et al., Full Offset) 

shale/sandstone 2.28, 3.07, 2.74 10.25, 9.99, 11.1 

shale/limestone 2.33, 2.46, 2.30 41.1, 29.8, 32.8 

shale/dolostone 0.41, 0.31, 0.23 11.4, 14.5, 15.3 

anhydrite/limestone 3.02, 10.5, 10.43 141, 88.7, 83.2 

anhydrite/dolostone 4.99, 1.60, 1.04 49.8, 48.5, 47.8 
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There appears to be generally a small decrease in %-error of IP relative to Fatti et 
al., although for dolostone the improvement is more substantial.  Since the Full Offset 
is always better for IP and is apparently neutral for IS (sometimes better and 
sometimes worse, but always similar) there appears to be some advantage in using the 
Full Offset method, particularly as it would be extremely simple to implement in any 
program that already has already implemented Fatti et al. 

The Generalized Gardner Relation 
The purpose of introducing the Generalized Gardner Relation was to replace the 

original Gardner relation with an expression that could provide more lithology 
specific information, without requiring separate expressions for each lithology.  It can 
be used as a replacement in the Smith-Gidlow and Full-Offset approximations which 
both employ the Gardner relation.  Below we display a screen capture of the applet 
output for the shale over sandstone lithology: 

 

FIG. 3 An example of inversion results for the shale/sandstone lithology presented as a 
screen capture from the CREWES AVO Inversion Explorer.  The inversion process employed 
Castagna’s mudrock relation and an angle range of 0 to 30 degrees.  500 different sets of 
earth parameters typical of the lithology were averaged over, and also displayed individually 
in the scatter plots. 

This is the type of output screen from which data in Tables 2-4 were collected.  It 
features an interactive control panel on the right and a plot of first critical angles at 
the bottom.  The %-errors of ∆α/α, ∆β/β (or IP, IS) are presented as both averages and 
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scatter plots.  The label “absolute” refers to the %-errors recorded in Tables 2-4.  The 
label “relative to AR” is the %-error relative to the Aki-Richards limit.  The label “for 
A-R coefficient” is another way to compare to the Aki-Richards limit.  In it we 
employ the reflection coefficients from the Aki-Richards approximation in the 
synthetic data, rather than the exact coefficients, but then to calculate the percent 
error deviation from the exact contrast or impedance.  Comparison to exact values 
(“absolute”) indicates how well the linear inversion is expected to perform.  
Comparison to the Aki-Richards prediction, or to “exact” values obtained from the 
Aki-Richards coefficients, is expected to give some idea of how well analogous non-
linear approximations would work. 

This display provides a useful comparison of the various approximations.  First it   
is of interest to see scatter plots for data in Tables 3 and 4.  Turning to the 
Generalized Gardner Relation, we observe that the Smith-Gidlow and Full Offset 
methods are not significantly improved and perhaps slightly worsened by use of the 
new Gardner relation. 

  One result which is at variance with expectations is that the result relative to the 
A-R prediction and the result using A-R coefficients are not necessarily similar to 
each other, particularly for IS.  This calls into question which of these two A-R 
methods, if any, is likely to be indicative of results with full Zoeppritz inversion.  In 
general the first method gives smaller %-errors than the second.   

One notes that the degree of scatter is strongly dependent on lithology, and is 
generally greater for impedance methods.  From observation of other lithologies (not 
shown) it also appears to be related to the scatter in critical angles. 

Inversion for ∆∆∆∆ρρρρ/ρρρρ 
Although the Generalized Gardner Relation did not appear to be an improvement 

over the original Gardner Relation in the results of the previous subsection, one 
benefit of its form is that it allows a unified approach for generating inversion 
schemes for ∆ρ/ρ, such as Equations (17)-(20).  We now present results of inversion 
for density contrast, and compare with some results from Table 2. 

Table 5. Typical average %-errors of ∆ρ/ρ predicted using Equations (17)-(20) and compared 
to the Aki-Richards limits. 

%-error (∆ρ/ρ) Eq. (17) Eq. (18) Eq. (19) Eq. (20) (α-ρ, β-ρ) 

shale/sandstone 512 512 4160 233 155, 18.4 

shale/limestone 181 181 1344 118 258, 11.2 

shale/dolostone 126 126 1477 143 376, 13.0 

anhydrite/limestone 95.7 95.7 129 104 14.6, 0.51 

anhydrite/dolostone 162 162 335 81.1 272, 8.64 
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We note that the same value of ∆ρ/ρ is obtained from Equations (17) and (18), 
which are both contrast-based methods.  The impedance-based methods [Equations 
(19) and (20)] differ in their predictions.  The bottom line of course is that ∆ρ/ρ is not 
particularly well predicted anywhere.    However, it does not even approach the Aki-
Richards limit, so that there still is plenty of room for improvement within the context 
of linear inversion. 

FUTURE DIRECTIONS 
This study suggests several directions of interest for future work.  It will certainly 

be valuable to extend the utility to treat cases of three-parameter inversion and joint 
inversion.  New ∆ρ/ρ inversion approaches are clearly of interest in the linear 
inversion framework, but the inherent limitations of the Aki-Richards approximation 
also motivate extension to non-linear inversion.   

Even given the utility in its current state, it would be useful to correlate subsets of 
the parameter distribution with different regions of the scatter plots, to help discern 
when approximations are most accurate.  Other representations of the data may be 
helpful, such as values of the parameters in addition to %-errors.  There are also 
intriguing questions regarding the origin of distinct patterns in the scatter plots, and 
perhaps understanding their origin would shed light on new directions for developing 
improved approximations. 

 

CONCLUSIONS 
This report presents results from a novel and useful tool, the CREWES AVO 

Inversion Explorer, which permits rapid assessment of AVO inversion 
approximations.  As a web-based tool it is convenient to use in any computing 
environment.  It presents graphically the wide range of values that can be obtained for 
any given lithological environment, and demonstrates the limits of accuracy available 
within the framework of linear inversion rooted in the Aki-Richards approximation. 

Assessment of specific practical methods shows that the method of Fatti et al. is 
significantly more accurate than that of Smith and Gidlow, and that a new approach 
presented here, the Full Offset method, gains somewhat on that of Fatti et al.  
Introducing the Generalized Gardner Approximation does not seem to improve 
inversion results, but does open up a convenient route to density inversion methods.  
Comparison with the Aki-Richards limit suggests that considerable improvement 
should still be possible without resorting to non-linear inversion. 
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The assessment method in this report is based on simple synthetic offset gathers 
with spike wavelets.  It thus provides a useful bound to the accuracy expected when 
one introduces the wavelet, noise, and larger offset binning of real data.  Its greatest 
strength is in its ability to model a wide distribution of earth parameters for each 
lithology, rather than just a few test cases.  Thus it is expected to become an 
important component of future AVO studies. 
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