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Weighted stacking of 3-D converted-wave data for birefringent 
media 

Richard A. Bale 

ABSTRACT 
This paper describes a proposed method for weighted stacking of 3-D converted-

wave data to give geometry-independent estimates of the S1 and S2 wavefields in the 
presence of shear-wave splitting. The method can also account for offset dependent 
amplitudes, which generally cannot be neglected for converted-wave data. The 
stacking procedure uses an estimate of the principal axis direction, but does not 
require information on the propagation differences between S1 and S2 modes. The 
stack normalization scalars are dependent on both acquisition geometry and principal 
axis direction. These are computed for a simple cross-spread example, to derive S1 
and S2 “effective fold” maps. The maps show features that are related to the interplay 
between geometry and principal axis direction. 

INTRODUCTION 
One of the promises of multicomponent seismic is the ability to characterize 

fractured reservoirs, using the sensitivity of shear-waves to azimuthal anisotropy – in 
particular the phenomenon of shear-wave “splitting” or birefringence. Birefringence 
can arise due to the presence of vertically aligned cracks in the medium or possibly 
due to the presence of preferential stress directions. Whilst azimuthal anisotropy has 
an impact on compressional waves both in terms of moveout and AVO variation with 
azimuth, it may be more readily detected from shear-wave data. In shear-wave 
birefringence the shear-waves propagate through the anisotropic medium with two 
distinct polarizations with different velocities, leading to the designation of a “fast” 
(S1) wave and a “slow” (S2) wave. The identification of these two polarizations and 
velocities has been the subject of much recent work (e.g. Garotta, 1989; Gaiser, 
2000). These and other workers have shown that 3-D converted-wave data may be 
used instead of the traditional 2-D approach requiring two orthogonally polarized 
shear-wave sources (Alford, 1986; Thomsen, 1988).  

Beyond estimation of polarizations, lies the goal of imaging of S1 and S2 modes. 
In order properly to image converted-wave data in the presence of shear-wave 
splitting, it is important to consider the kinematic and dynamic variations with 
polarization. Failure to do so can result in poor resolution and incorrect amplitudes 
(Probert and Wells, 2000). Simple imaging of the 3-D radial component, valid for 
azimuthal isotropy, fails to the degree anisotropy is present. Shear-wave splitting 
combined with spatial variations in the azimuth distribution result in an exacerbation 
of the usual acquisition footprint problems encountered with 3-D surveys. One 
approach is to remove the kinematic and dynamic effect of the anisotropy by “layer 
stripping” and recombine the modes to form an “isotropic” radial component image. 
However, the P-S1 and P-S2 amplitudes are potentially different and independently of 
interest. The goal of this paper is to formulate a practicable theoretical basis for 
determining separate P-S1 and P-S2 images from the 3-D data.  
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THEORY 
Figure 1 depicts a layered medium containing a single anisotropic layer, resulting 

from vertically aligned cracks or stress field. The converted-waves can interact in 
three possible ways with the anisotropic layer. In case A, the wave is converted from 
the top of the anisotropic layer. This results in a transverse (out of plane) amplitude 
response, but not in any splitting, since there is no propagation through the layer 
itself. The effect is fairly benign, in the sense that there is no kinematic variation with 
azimuth, which would tend to degrade the imaging. In case B the wave is converted 
by a reflector below the anisotropic layer, giving rise to an initially radial shear-wave, 
which then becomes split upon transmission through the anisotropic layer. In this 
case, the associated travel-time delay differences can degrade the image if 
unaccounted for. Finally, in case C we get a mixture of these two effects, with both 
reflection and propagation being influenced by the anisotropy layer. In this paper I am 
considering case B. 

Figure 2 shows the relationship between the source-receiver geometry, the 
principal axes (i.e. S1 and S2 directions) of the medium, and the X-Y coordinate 
frame. Here it is assumed that the in-line and cross-line geophone have been aligned 
along the X and Y axes respectively.  

 The splitting  behaviour of the converted-wave B shown in Figure 1 can be 
formulated in the frequency domain as follows (after Li, 1998): 
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where X and Y are the recorded wavefields for in-line and cross-line component 
geophones respectively, θ is the azimuth between the source-receiver azimuth and the 
X-axis, and φ is the azimuth between the fast shear-wave (S1) direction and the X-
axis. R is a rotation matrix given by:  
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( )ωPSU  needs a bit of explanation. Here it is taken to be the wavefield 
immediately after mode conversion at point CP (Figure 1). It includes the P-wave 
propagation effects, the AVO response of the reflection (the reason for including this 
will become apparent), but not any shear-wave propagation effects. The terms ( )ω1f  
and ( )ω2f  describe propagation along the S1 and S2 directions respectively, 
including any pure SV leg prior to splitting. Moving from right to left, equation (1) 
shows a converted-wave, initially polarized in the radial direction, being decomposed 
into orthogonal shear-wave modes polarized in the S1 and S2 directions, each mode 
propagating with different time delays and different transmission responses through 
the anisotropic layer, then being recorded by horizontal components in the X and Y 
directions. I note in passing that if 21 ff =  and 21 ττ = , corresponding to the isotropic 
case, then the diagonal matrix in equation (1) is a scaled identity matrix. In this case 
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the rotation matrices can be multiplied directly to obtain a simple rotation, R(θ ), 
which corresponds to mapping from source-receiver to acquisition coordinates, and 
can be simply inverted by the usual radial rotation RT(θ ). 
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FIG. 1. Recording of birefringent shear-waves from converted-wave acquisition. Shaded area 
depicts an azimuthally anisotropic layer. Event A, from top of the anisotropic layer, has an 
azimuthal reflection response effect. Event B, reflected from below the anisotropic layer, has 
both azimuthal traveltime and transmission response effects. Event C has reflection 
response, transmission response and traveltime effects. 
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FIG. 2. Schematic diagram of surface geometry, showing azimuths of radial (shot-receiver) 
direction and principal axes (S1 and S2) relative to XY receiver coordinate system.  
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Li (1998) considered the 3-D behaviour of equation (1), and showed that the 
transverse component undergoes polarity reversal when θ crosses the S1 and S2 
azimuths, φ and !90+φ . This property may be used (Bale et al., 2000) as a “detector” 
of the S1 azimuth. 

Equation (1) may also be written in the following form: 
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When deciding on the inverse problem, it is important to decide what we wish to 
recover from equation (2). Obviously one possible answer is ( )ωPSU , the wavefield 
at the reflector after removing the propagation effects of the birefringence. This is the 
approach taken by Gaiser (2000) and others, whereby the difference between S1 and 
S2 modes is removed in order to recombine them into a single “radial” response. In 
some cases, however, we may wish to retain independent results from the split shear-
waves, particularly, perhaps, where there may be some difficulty removing the effects 
of the S1 and S2 responses, or where we want to look at S1 and S2 reflectivity. In this 
case, it is desirable to recover ( )ω1PSU  and ( )ω2PSU , which describe the earth’s 
response to P-waves generated in the fast and slow directions respectively. It is 
important to note that these exclude the rotation terms, which are acquisition 
dependent, resulting from the choice of source and receiver positions. It is also 
important to note that we do not recover ( )ω1PSU  and ( )ω2PSU  by simply rotating to 
the principal (S1 and S2) axes, using ( )φTR . 

For a single trace, the inverse equation is quite straightforward: 
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However, this will generally not be the optimal approach for multifold data, as it 
will tend to amplify noise along the principal directions, where θ = φ. 

Stacking 
In a 3-D multicomponent survey, the converted-wave (usually horizontal component) 
data are stacked together based upon their common conversion point (CCP) location 
(Tessmer and Behle, 1988; Thomsen, 1999). I assume here that the same conversion-
point binning is valid for both S1 and S2 modes, though note that in general it may 
not be, if the difference in velocities is significant. Consider an arbitrary bin 
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containing both X-component and Y-component traces i=1,…,N, each with different 
shot and receiver coordinates, which are to be stacked (as illustrated in Figure 3). 
Which parts of equation (1) are expected to be a function of the shot and receiver 
locations? If it is assumed that ( )ω1PSU  and ( )ω2PSU  are offset-independent (a 
dubious assumption which is revisited in the next section), then the only dependence 
on geometry is through θ. 

 We thus have: 
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These are actually two decoupled sets of N equations each for the two unknowns 
( )ω1PSU  and ( )ω2PSU , which can be written as two least squares problems: 
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FIG. 3. CCP binning geometry. iSA ,1 and iSA ,2 are amplitudes of S1 and S2 for θi. Azimuth 
variation of traces contributing to the CCP stack leads to geometry dependent amplitude 
effects.  
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These are trivially inverted to yield the required P-S1 and P-S2 wavefields, as 
weighted stacks: 
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The weighting coefficients are interesting in themselves, as they contain important 
information about the geometry of the survey relative to the principal axes. For 
example, the sums in the denominators may be interpreted as a kind of “effective 
fold” for S1 and S2, as shown below in the “Example” section. 

Equation (6) was derived and applied to a synthetic dataset by Bale et al. (2000).  

Offset dependence 
Converted-waves are subject to a strong AVO effect, which is approximately 

sinusoidal at small incidence angles. Unless the offsets being stacked are very similar, 
(e.g. if stacking is being performed in offsets bands) the assumption of offset 
dependence made above is unjustified.  

The relationship between P-S reflectivity and S-S reflectivity for small angles 
( !20< ) is given by (Stewart et al., 1995): 

 SS
S

PS RpVR 4=  (7) 

where dxdtp =  is the ray parameter, and VS is the interval shear velocity averaged 
across the reflector.  

To incorporate the angle dependence into the birefringent stacking correction, we 
make the following substitution: 

 ( ) ( )0,4, ωω SSSPS UpVpU = . (8) 

The assumption here is that USS may be treated as an offset- (and azimuth-) 
independent response (though it is not strictly speaking a shear-wave earth response, 
since the downward propagation is a P-wave). Updating equation (4) and labeling the 
ray-parameters for different traces pi, (i=1,…,N) we obtain: 
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where the natural definitions of the (geometry-independent) fast and slow shear-wave 
wavefields USS1,2 are: 
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Setting up the least squares equation for USS1,2, we obtain: 
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The solution to equation (10) is given by: 
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Equation (11) suggests a solution in the frequency/ray-parameter domain. Indeed 
this may be possible. However, in general the sampling along any specified azimuth 
is insufficient from typical 3-D geometries to generate the required radon transform. 
An alternative is to recast equation (11) in the space-time domain.  
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The ray parameter may be computed from a suitable moveout equation, under an 
assumption of layered media. For example we could use the standard NMO equation, 

2
2

22
0

2
PSVrtt += , with zero-offset time t0, finite-offset time t, source-to-receiver 

offset r, and converted-wave stacking velocity VPS2 (following Walden, 1991), to 
give: 
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Higher order approximations are also possible (Bale et al., 2001; Nieto and 
Stewart, 2001), but for consistency would require parameterization of AVO with a 
two-term equation instead of (7). For this analysis, I consider only small angle 
approximations implied by (7) and (12). 

Applying an inverse Fourier transform to equation (11), and substituting equation 
(12) into it, we get: 
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Algorithm 

The algorithm implied by equation (13) consists of the following steps: 

1. Apply NMO with velocity VPS2. 

2. Rotate X and Y component data to principal axes, using RT(φ). 

3. Apply weighted stacks based upon 2
2

22
0/ PSVrtrtr +=  multiplied by the 

cosine (S1) or sine (S2) of the radial azimuth relative to the S1 direction. 

4. Normalize by sum of squared weights. 

5. Poststack multiply amplitudes by SPS VV 42
2 . 
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These are all fairly straightforward modifications of standard processing steps 
applied to 3-D converted-wave data. The only additional burden is keeping track of 
the weighting functions in order to apply poststack normalization.  

Special case: 2-D geometry 

In the 2-D case, θ =0, and we have a rotation which is constant for each trace 
(Fang and Brown, 1996; Fang, 1998). This situation is more difficult from the point 
of view of estimation, as the variation with azimuth is unavailable, but simplifies the 
stacking problem, as the X and Y components may be independently stacked, since 
the same rotation will be applied to all traces. This can be seen by substituting θ =0 in 
equation (13), to give: 
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Thus for 2-D data, we have an AVO type weighted stack, divided by a constant 
cosine or sine of the S1 azimuth relative to the in-line direction. This is just an overall 
scaling factor, which could be neglected unless comparing the S1 and S2 amplitudes 
with each other. 

EXAMPLE: S1-S2 FOLD ANALYSIS 
For isotropic processing, the converted-wave stack is normalized by the CCP fold, 

which is a simple count of the traces falling into the bin before stack. It is possible to 
identify quantities which play the equivalent role as CCP fold when performing 
weighted stacking for S1 and S2, based on inspection of equations (6) (offset-
independent stacking) and (13) (offset dependent stacking). I illustrate the resulting 
“effective fold” maps for the cross-spread geometry shown in Figure 4, which is 
typical of OBC acquisition. Shot and receiver lines are 200 meters apart, whilst both 
shot and receiver spacing is 25 meters along the lines. Five orthogonal shot lines and 
receiver lines were used.  

Figure 5 shows the conventional CCP fold map obtained from the above geometry, 
based upon asymptotic CCP binning, using a γ (VP/VS) value of 3, and binning the 
CCPs onto a 12.5 m x 12.5 m grid. The resulting fold is fairly uniform, not falling 
below 10 fold within the fully covered region. Figure 6 shows the fold maps based 
upon equation (6), with the fast direction parallel to the X-axis ( !0=φ ). There are 
now two maps, one (a) for the “effective S1 fold”, and another (b) the “effective S2 
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fold”. Whilst the numerical values cannot be directly compared with conventional 
fold, due to the trigonometric factors, there is more variation spatially. The different 
patterns of fold variation, compared to the conventional fold map, arise due to the 
bin-to-bin variation in azimuth distribution and more specifically deviation from the 
S1 and S2 directions. Figure 7 shows the corresponding pair of S1 and S2 fold maps 
for φ = 45º. Note that the principal axis direction leaves an imprint on the effective 
fold map, indicating that it will have in influence on the acquisition footprint if 
uncorrected for. The S1 and S2 maps were also computed for φ = 90º. As anticipated, 
the results were identical to the maps for φ = 0º, but with the roles of S1 and S2 
reversed, and are not shown here. Figure 8 shows the results based on the offset 
dependent equation (13), for an S1 azimuth φ = 45º.  This should be compared with 
Figures 5 and 7. Again whilst direct numerical comparison is not meaningful, due to 
the offset factors now included, the increased variation spatially is apparent. 

DISCUSSION 
An important – perhaps surprising – facet of the algorithm embodied in equation 

(13), is that apart from the direction, φ, of the principal axes, no further knowledge of 
the birefringent medium is needed. We don’t need to use the transmission responses 
or the travel delay times, anywhere, in computing the S1 and S2 stacks. Indeed it 
appears from equation (2) that once we have obtained the stacks USS1 and USS2, we 
should be able to compute a transfer function to map the transmission response of one 
to the other. Whether this is achievable in practice remains to be demonstrated. 

Whilst the above theory is based upon looking at the transmission effects on a 
conversion from below the birefringent layer, it can and should be extended to the 
analysis of reflections from within such media. This will enable the characterization 
of fractured media at the reservoir level, instead of simply removing overburden 
effects. The analysis above considers the case of a single anisotropic layer, whereas 
we may in practice observe changes with depth in the polarizations due for example 
to changes in stress regime or fracture orientation. In this case, it is probably 
preferable to layer strip the overburden layers, and confine the separate imaging of S1 
and S2 to the reservoir. Otherwise the interpreter may be confronted with 2N images, 
where N is the number of different birefringent layers!  

The above derivation of S1 and S2 weighted stacking is based upon a number of 
assumptions that may need further examination. Firstly, the theory of S1 and S2 
modes, in particular the assumption of orthogonality, is based upon near-vertical 
wave propagation. Likewise, as noted above, the AVO equation and the ray-
parameter calculation are also near offset approximations. A challenge, therefore, is 
to quantify accuracy for realistic offset ranges, and if possible to extend the theory to 
larger offsets. 

An issue which is always important to consider when performing any vector 
processing of X and Y component data, such as that described above, is the issue of 
vector fidelity. A second related issue is that of geophone orientation. Whilst these 
prerequisites have been assumed here, they are the goal of much ongoing work at 
present. A recent example of this work is Dellinger et al. (2001). 
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CONCLUSIONS AND FUTURE WORK 
Stacking 3-D converted-wave data to obtain S1 and S2 images is more involved 

than for 2-D data, due to the variation in azimuth relative to the principal axes. I have 
developed a theoretical basis for doing so, including the effects of both azimuth and 
offset. There is an acquisition footprint effect that can be identified by examining the 
effective S1 and S2 fold maps. I have shown examples based on a cross-spread 
geometry. 

Imaging using S1-S2 weighted stacking theory needs to be demonstrated on both 
model and synthetic 3-D converted-wave data. Further extensions to the theory, as 
mentioned above, will be pursued. 
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FIG. 4. Cross-spread acquisition geometry for fold study. Shot and receiver spacing is 25m.  

 

FIG. 5. Fold map for 12.5 x 12.5 meter binning, based on asymptotic binning with γ=3. 
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FIG. 6(a). Effective S1 fold computed from ( )∑
=
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i
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2cos φθ , with φ = 0°. 

 

FIG. 6(b). Effective S2 fold computed from ( )∑
=
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2sin φθ , with φ = 0°. 
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FIG. 7(a). Effective S1 fold computed from ( )∑
=
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1

2cos φθ , with φ = 45°. 

 

FIG. 7(b). Effective S2 fold computed from ( )∑
=
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2sin φθ , with φ = 45°. 
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FIG. 8(a). Effective S1 fold computed from ( )∑
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FIG. 8(b). Effective S2 fold computed from ( )∑
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