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Seismic imaging is a general term that geophysicists now use to describe processes 
that convert seismic data into a geological “representation” of the subsurface. These 
“representations” may vary from simple structural images that use migration 
algorithms, to ones that estimate rock properties with algorithms that are based on 
inversion theory. This paper will address the basic concepts of modelling and 
poststack migration to build a foundation of knowledge for the companion paper 
(included in this Report) on prestack migration and seismic inversion.  

The migration algorithms will be described by the three classifications of 
Kirchhoff, FK, and downward-continuation. To assist in describing these algorithms, 
a number of models will be presented that start with a known geological cross-
section, which are then used to create seismic data. These models are then used to 
describe features of the migration algorithms. 

Most of the material in this paper has been taken from my course notes that are 
published by the SEG. These contain an extensive list of references that have not 
been included in this review with the intent to keep it more readable. In addition, little 
mathematics is used, which are replaced by basic physical principles that are used 
with the intention of providing a heuristic foundation of the migration principles. 

INITIAL COMMENTS ON DEPTH AND TIME MIGRATIONS 
In order to represent the geology of the subsurface, the final image “should” be 

viewed with a vertical axis in depth. However, many algorithms run much faster, and 
therefore much more economically, when the vertical axis of the migration is 
processed in time. These different processes are loosely referred to as depth and time 
migrations. 

The objective of a depth migration is to position the reflected energy at its true 
reflecting geological location, and with an amplitude that represents the reflectivity at 
that location. In contrast, the objective of a time migration is to achieve the best 
focusing of the energy at a relative position. In structured areas, the relative lateral 
position deviates from the true lateral position by distances and time that may be 
estimated from image-rays that leave the surface in a vertical direction. 

Depth migration requires considerable effort to build an accurate velocity model 
with axis of horizontal position and vertical depth. In some geological areas, errors in 
the location of the interface or in the velocity of shallow layers will cause errors in 
imaging deeper layers. Therefore, a number of iterations are required to build these 
depth velocity models, which usually commence by estimating the structure and 
velocities at shallower levels and then iterate to the deeper layers. Geological 
constraints should be continually applied during the development of the velocity 
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model to ensure the structural integrity. At best, these depth migrations only produce 
an approximation to the subsurface with the actual spatial and depth of reflectors 
being limited to some percentage of accuracy. However, in structurally complex 
areas, it may be too difficult to build an accurate depth model and time migration may 
be the only option to create a subsurface image. 

Time migrations typically use a simpler velocity model with axis of horizontal 
position and vertical time. The velocity at a particular location may be used to focus 
energy at that location, and will be independent of the above or surrounding structure. 
A processor with limited geological input can construct these velocity models, with 
few iterations required. 

The inclusion of anisotropic velocities has allowed more accurate velocity models 
to be constructed with accurate geological constraints, that may produce improved 
focusing and more accurate positioning of the migrated image. 

SCATTERPOINT MODEL AND RMS VELOCITIES 
Let’s assume that a small-diameter buried pipeline P crosses a 2D seismic line at a 

right angle as illustrated in Figure 1a. This pipe will reflect energy from any source 
point on the surface to any receiver point on the surface although at this time we are 
only considering the energy that returns to a single receiver located at the source 
point. We refer to this type of reflector as a scatterpoint. Zero-offset recordings are 
made at various locations across the surface, with their time response plotted below 
each surface location as illustrated in Figure 1b. The reflection energy lies on a curve 
defined by the two-way traveltime T. 

When the velocity of the subsurface is constant, the shape of the curve at time T is 
defined by the vertical traveltime T0 from a source/receiver pair located immediately 
above the pipe at 0, and the distance x from location 0 to the location of a displaced 
source/receiver pair at S. Consider the triangle formed from the points (0, S, P) with 
two sides defined by T0 and T. The third side has is the distance, x, which is converted 
(using velocity V) to a two-way time of 2 /x V . With the units on the three sides of 
the triangle the same, Pythagoras’ theorem is then used to define the two-way travel 
time T by 

 
2

2 2
0 2

4xT T
V

= + . (1) 

The reflection curve defined is usually referred to as a “diffraction” with a shape 
that depends on the depth of the pipe (usually expressed by T0) and the velocity, V. 
The equation is exact for constant velocities, and is a very good approximation for 
horizontally layered media when the RMS velocity Vrms is used in place of V. In 
structured areas, the hyperbolic assumption may not be accurate enough and ray 
tracing or traveltime grids may be required to estimate the traveltimes. 
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FIG. 1. A scatterpoint model (a) and its diffraction (b). 

When the displacement, x, becomes very large, T becomes proportional to 2x/V, 
defining a straight line that is referred to as an asymptote. These asymptotes are 
illustrated in Figure 1b by the dotted lines that intersect at the surface. All diffractions 
will have similar asymptotes that also intersect at the surface; a condition assumed by 
most migration algorithms. Therefore, changing the time datum before migration will 
prevent focusing data on a diffraction that is defined by equation (1), producing an 
inferior migration. Therefore, migration should be performed with time zero being as 
close to the surface as possible. Areas with rugged surface topography will require 
special attention. 

Equation (1) is very important as it provides the basic traveltimes for many seismic 
processes, including normal moveout (NMO) correction, and both post- and prestack 
time migrations that may include anisotropy and or mode conversions. One-way 
traveltimes from the source to the scatterpoint, or from the scatterpoint to the receiver 
are computed by dividing this equation by two (2.0), leading to the double square root 
(DSR) equation for prestack migration. 
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Diffraction modelling 
We extend the model described above to be more practical by assuming a reflector 

is composed of many scatterpoints, with each scatterpoint creating its own diffraction. 

 

FIG. 2. Construction of a zero-offset section using diffraction modelling with a) the geological 
cross-section to be modelled, b) the final modelled seismic section. Panels (c), (d), (e) and (f) 
illustrate the inclusion of diffractions from an increasing number of input traces, i.e. 1, 8, 16, 
and 64. 

It is usually sufficient to assume that the  scatterpoints are located at equal 
increments along the reflector with spacing similar to the trace interval on the zero-
offset section. To prevent aliasing, the wavelet is limited to a maximum frequency 
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that depends on the velocity, dip, and trace spacing. This modelling technique is 
illustrated in Figure 2, in which four reflectors in the geological cross-section of (a) 
are modelled with diffractions to produce the section (b). In figure (c) only the 
diffractions from the center geological trace of (a) are shown. The number of 
geological traces used to create diffractions is increased to 8 in (d), 16 in (e), and 64 
in (f). All geological traces are used in producing the completed zero offset section in 
(b). Note in (c), (d) and (e) that the diffractions are still identifiable, but in (f) their 
energy appears as noise. When all geological traces are converted to diffractions, as 
in (b), the noise cancels and the desired seismic model reconstructs. 

The diffraction modelling technique is now used to imply that all seismic data are 
formed from diffractions. The reverse process of converting diffraction back to the 
geology may then be referred to as diffraction stacking or Kirchhoff migration. 

KIRCHHOFF MIGRATION 
Kirchhoff migration algorithms range from very simple time migrations to 

complex prestack depth migrations that can include anisotropy and or mode 
conversion. Three fundamental elements of all Kirchhoff migrations are: 

• the definition of a diffraction shape from a scatterpoint location,  

• the summing of input energy along a path defined by the diffraction shape, and  

• placing the weighted summed value at the location defined by the  scatterpoint. 
This procedure is repeated for each sample in every migrated trace. 

 
FIG. 3 Illustration of a Kirchhoff migration where diffraction energy in the input section of a) is 
summed and relocated at the  scatterpoint location in b) the migrated section. 

The kinematic shape of the diffraction may be assumed to be hyperbolic for a time 
migration, or a more complex shape that is defined by raytracing or the computation 
of traveltimes on a grid for a depth migration. Additional complexities occur when 
considering multiple paths to the  scatterpoint, the existence of anisotropy, or varying 
propagation modes in elastic media.  

Antialiasing filters may also be required to eliminate the inclusion of aliased input 
energy on the input data, operator-aliasing of unaliased input data, or to prevent 
aliasing on the output section. Use of the antialiasing filters becomes a choice 
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between the energy on dipping event, the presence of aliased noise, and computation 
speed. It should be noted that horizontal events have no aliased energy, but Kirchhoff 
migration can still introduces aliased noise when an antialiasing filter is not used as 
illustrated in Figure 4. The antialiasing filter is a zero-phase high-cut filter that is 
uniquely defined by each point on the diffraction and can add considerable processing 
time to the algorithm. Consequently, a number of approximations to the filter are 
used, or it may even be eliminated. 

 

FIG. 4. Kirchhoff migration of model data illustrating the use of an antialias filter on half the 
data. 

Figure 4 contains numerically modelled data that has been migrated on the left side 
without the antialiasing filter, while the right side includes the antialiasing filter. Note 
the presence of aliasing noise on the left side, even for the horizontal reflector 
(horizontal lines above the horizontal reflector). Also note that the steeper dip on the 
left side has a higher amplitude and higher frequency content (which happens to be 
aliased) than that of the corresponding dip on the right side. 

To this point we have only stated that we sum the energy within the diffraction 
window, which leads to the term of the diffraction stack method. Could we get a 
better image if each input sample, defined by the diffraction, was weighted by a 
unique value chosen from a weighting function? This dilemma was resolved when it 
was recognized that the diffraction stack method was similar to a Kirchhoff integral 
solution to the wave equation that was used in optics. This integral solution to the 
wave equation provided an amplitude-scaling and phase-shifting term that improved 
the focusing of the diffraction stack migration, which is now referred to as Kirchhoff 
migration. The relative amplitudes of the weighting function may be simply defined 
by 0 /T T , defined as being proportional to the length of the raypath, computed using 
the transport equation, or computed by multi-path raytracing. (The amplitude-
weighting of prestack Kirchhoff migration is a very complex issue and is typically the 
topic of various solutions to the inversion problem.) 
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One of the main advantages of Kirchhoff migration is its ability to use arbitrary 
input or output geometry. Figure 3 illustrates that one output sample could be 
migrated. (This is in contrast to the other methods that require all the input data to 
produce all the migrated data.) This arbitrary geometry feature enables small subsets 
of data to be migrated very rapidly, such as a “porthole,” which could be a small 
window of migrated data that is limited to small ranges of traces and depth (or time) 
from either 2D or 3D data. Other subsets of data could be the migration of all input 
3D data to an arbitrarily located 2D line, or to any defined time-slice (or depth-slice).  

The arbitrary geometry property of Kirchhoff migration also allows 3D data that is 
acquired with a bin spacing of 25m by 50m to be migrated to a new bin spacing of 
20m by 20m. In addition, a number of input 3D projects with different acquisition 
geometries and layout directions can be efficiently combined into one migrated 
volume without a prior interpolation to the new migrated grid. 

The migration aperture is often defined as a spatial distance that limits the range of 
input traces migrated to one output location. While this definition may also be used 
for Kirchhoff migration, it should be noted that the lateral extent of the summation 
window could be limited for each migrated sample. This is usually accomplished by a 
dip limit that is placed on the diffraction. For a given dip limit, the lateral extent of 
the diffraction will be small for shallow data and large for deeper data. Within this 
context, the migration aperture of a Kirchhoff migration may be considered to be time 
variant. 

FK MIGRATION 
Use of the Fourier transform can greatly simplify the migration process, as 

illustrated in Figure 5. An input 2D zero offset section p(x, t) in (a) contains three 
events with dip α. This input section is 2D Fourier transformed into P(Kx, ω) in part 
(b) where wavenumber Kx is the Fourier transform of the x component, and radial 
frequency w the Fourier transform of the t component (often written as frequency F; 
giving the name “FK” migration). All energy with the same dip is aligned together in 
the P(Kx, ω) domain with the dip α measured from the vertical. We now make a quick 
visit to the wave equation, which is expressed in the time-space domain in equation 
(2) and in the wavenumber-frequency domain in equation (3). Note that equation (3) 
contains three squared terms that could (and does) represent the sides of a right-angle 
triangle. 
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Solving equation (3) for Kz , we get equation (4), which quantifies the data 
movement in Figure 5c, in which a sample of energy located at P(Kx, ω/v) with dip α 
before migration, is moved vertically to location P(Kx, Kz) with dip β after migration. 
After the data movement, the point P(Kx, Kz) defines a triangle where the radial 
distance is given by ω/v, according to equations (3) and (4). Thus, the migration 
algorithm in the frequency domain is a simple point-to-point data movement, which is 
very fast relative to the other algorithms and is an efficient means of applying the 
migrator’s equation, tan sinα β= , in the frequency-wavenumber domain. The 
inverse 2D Fourier transform produces the migrated section P(x, z) with the three 
events at dip β. 

 

FIG. 5 Illustration of the steps in a constant-velocity FK migration with a) the input time 
section, b) the input Fourier-transformed section, c) the migrated Fourier-transformed section, 
and d) the migrated depth section after inverse Fourier transform. 

Unfortunately, the temporal and spatial locations are not easily identified in the 
transformed space and the process assumes a constant velocity. This restriction is 
partially overcome by performing a vertical time-to-depth stretch (really a variable to 
constant-velocity stretch) prior to the initial transform and a corresponding depth-to-
time conversion after the inverse transform. The time-to-depth stretch requires a 
velocity field in which the average or RMS velocities have been smoothed. 
Consequently, the FK migration algorithm may be used successfully in areas with 
smooth velocity variations such as the marine environment, sedimentary basins, or 
the exposed basement for mining in granite. In these areas, the inclusion of dip 
moveout (DMO) is also recommended.  

One effect of the time-to-depth stretch is to reduce the effects of lateral velocity 
variations, producing a migrated section that tends to locate migrated energy closer to 
the lateral position of a depth migration. 

Even though FK migration is only ideal for constant velocity data, it does have a 
number of additional applications that make use of it speed and accuracy. Some 
migration procedures migrate the input section a number of times at different constant 
velocities and then form the final migrated section using a cut-and-paste method that 
selects the output according to the velocity model. Another application cascades two 
different migration algorithms in which the steep dip feature of the FK algorithm is 
combined with a shallow dip algorithm that uses variable velocities. In this case the 
first stage is a constant-velocity FK migration, which then becomes the input to the 
second stage in which the variable-velocity migration algorithm is performed using a 
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modified velocity field. The FK algorithm also provides an ideal solution for 
comparison with the solutions from other migration algorithms that are tested with a 
constant velocity. Any differences may be attributed to the algorithm under test. 

The Fourier transform may also be used in some Kirchhoff migration algorithms 
where accurate time shifts are computed with linear phase shifts, or in the downward 
continuation process where one depth layer is extrapolated to the next depth layer. 

DOWNWARD CONTINUATION MIGRATION 
Modelling seismic data at varying depths 

The left side of Figure 6 contains four simple constant-velocity geological 
structures (a), (c), (e), and (g), that have varying surface elevations, and one 
scatterpoint at a fixed elevation. The right side of the figure contains the 
corresponding zero-offset seismic sections (b), (d), (f), and (h), with time zero located 
adjacent to the recording elevation. As the depth to the scatterpoint is decreased, the 
time to the apex of the diffraction is also decreased. The extent of the diffraction is 
limited to the same dip and becomes smaller as the recording surface moves down 
toward the  scatterpoint. At the fourth level, when the recording surface is at the depth 
of the scatterpoint, the reflected energy in the diffraction is concentrated at the 
location of the  scatterpoint. In a real recording situation, this recorded amplitude 
would be very large and distorted, but it is still a useful exercise to contemplate. 

Now consider the same content of Figure 6. However assume that energy 
contained in the lower three seismic sections, (d), (f), and (h), is somehow computed 
from the shallower section. Each section now corresponds to a recording at a given 
depth (or elevation). In each case, the diffraction is raised in the time section and the 
extent of the diffraction reduced; however the total energy in the diffraction remains 
the same. In the last section (h), all the energy is concentrated at time equal to zero. 
Note that the depth of this section (h) corresponds to the depth of the scatterpoint. 
This method of propagating the seismic sections to increasing depths is referred to as 
downward-continuation migration, and energy that focuses at time zero is mapped to 
the migrated depth section at that depth. 

Downward continuation steps 
The downward-continuation method of migration is also illustrated in Figure 7, 

where the seismic sections from Figure 6 are now arranged in a cubic form V(x, z, t) 
with each time section located at the corresponding recording depth, z. The input 2D 
section p(x, t) is the top surface of the cube V(x, z=0, t) and identified by the blue 
outline in Figure 7. The increments in depth are identified by δz in the depth 
migration of (a). The energy from the diffraction at z=0 is now focused in the 
direction of the brown dashed line to a point at time t=0, on the fourth depth level 
(z=3-δz), corresponding to the section in Figure 6h. When all layers of the volume 
have been computed, all other diffraction on the input time section would be 
collapsed to their corresponding scatterpoints on the depth migrated output section, 
V(x, z, t=0), identified by the brown outline in Figure 7a. 
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FIG. 6. Geological cross-sections with a scatterpoint at a fixed elevation (left) and the 
corresponding seismic recording (right). The depth of the recording starts at the surface (a) 
and increases in three equal increments to (g), the depth of the scatterpoint. 

The downward-continuation algorithm could be modified to prevent the diffraction 
rising in time, enabling it to collapse toward the same location at the apex of the 
diffraction as identified by the green dashed line in Figure 7b. At the appropriate 
depth level, z = 3-δz, or corresponding time increment 3•τ , the energy has focused to 
the peak of the diffraction, then that portion of focused data is mapped to the bottom 
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of the volume. When the entire volume is computed, the output is a time migration 
identified by the green outline of V(x, z=zmax, t). 

 

FIG. 7. Illustration of the downward-continuation method of migration. The diffraction (red) on 
the top blue surface (x, z = 0, t) is depth migrated in a) to the brown vertical surface (x, z, t = 
0), or, in b) to the green bottom surface (x, z = zmax, t). 

Exploding reflector model 
The final model to be introduced is the exploding reflector model (invented by the 

late Dan Loewenthal) that identifies how energy can be propagated from one depth 
level to the next. This model replaces the two-way raypaths from the colocated source 
and receiver, with a single raypath (at half the velocity) from the reflector to the 
surface. This model assumes that the source point for each ray is located on the 
reflector, and leaves with a path normal to the reflector at time zero. The model 
becomes more general when we consider each point on the reflector to be a  
scatterpoint that radiates energy in all directions and would create a diffraction pattern 
when recorded on the surface. When considering all the source points on the reflector, 
it would appear that the entire reflector exploded at time zero. At fixed interval of 
time, all the exploding points would construct a wavefront corresponding to that 
produced by the exploding reflector as illustrated in Figure 8. 

Figure 8a shows two two-way raypaths for a source and receiver located x1. A 
seismic trace recorded at x1 will contain energy at the corresponding traveltime. In 
contrast the circles in Figures 8b-8c represent some of the wavefronts from exploded 
scatterpoints on the reflector at the specific times of T1, T2, and T3. The summation of 
all scatterpoint wavefronts would reconstruct the wavefront of the exploded reflector. 
At time T2, some energy has propagated to the surface at z = 0, as indicated by the 
blue arrows and is recorded on the seismic traces at that location x, and at that given 
time T2. At the later time T3, the wavefront has expanded to new surface locations as 
indicated in (d). If the wavefronts were computed at two-millisecond intervals, then 
the sample in all the seismic traces would be samples at two-millisecond intervals. 

The dipping reflection point in Figure 8a is also shown in (b) along with its 
wavefront (dashed curve) at the same two-way time of the raypath. Wavefronts from 
all scatterpoints on the dipping event would construct a wavefront that passes through 
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the same point x1 with a kinematic response that is identical to that of the raypath in 
(a). 

 

FIG. 8. Illustration in a) of the two-way raypath method and b) the exploding reflector model 
at a specific time T1, c) at time T2, and d) at time T3. Blue arrows indicate the spatial location 
of the wavefront at z = 0 and the corresponding times T2 in (c) and T3 in (d). 

A collection of all the geological cross-sections, in which the wavefronts have 
been computed at equal increments of time, are arranged in a cubic form with 
dimensions V(x, z, t) as illustrated in Figure 9a. The geological structure is viewed on 
the front surface V(x, z, t=0) with subsequent images on planes with constant time ti 
V(x, z, t=ti). The resulting seismic section is the top surface V(x, z = 0, t). 

 

FIG. 9. Volume (x, z, t) showing the geological cross-section (x, z, t = 0) and the seismic 
section (x, z = 0, t), with a) illustrating modelling the seismic data using many wavefront 
cross-sections, and b) downward continuation migration using many depth slices.  
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The energy on each geological cross-section can be computed from the previous 
cross-section by using various solutions to the wave equation. For example, energy at 
time zero V(x, z, t = 0) can be propagated to the next time increment at increment V(x, 
z, δt) and then to V(x, z, 2δt) until the entire volume is computed. 

Now consider the reverse process. Using the same model of the exploding 
reflector, we could start with seismic data on the top surface of the volume, and using 
the wave equation, propagate the energy back into the subsurface, in a downward 
manner, as indicated by the depth slices in Figure 9b. The front surface V(x, z, t=0) 
would then represent the geological cross-section or depth migration. 

When using the wave equation to move energy for one depth level to the next, it is 
convenient to start with the Fourier transform of the wave equation and find the 
derivative of the wavefield in the depth, or z, direction, i.e. equation (3) becomes 

 
2 22

2
2 21 x

z x
V kdP k k

dz V V
ω ω

ω
=> = − = − . (5) 

Exact solutions of this form lead to the phase-shift method of Gazdag, or the 
combination method of Margrave. The square-root part of equation (5) may be 
expressed as a power series in the form  
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Truncation or simplification of the power series leads to many approximate 
solutions, which may be converted back to the time-distance domain that use the 
finite-difference method. For example, using the first two terms of the power series 
leads to the 15-degree finite-difference solution. Other finite-difference solutions, 
with more accurate approximations to the square-root, are referred to as the 45°, 60°, 
and 65° solutions, indicating their relative accuracy to increasing geological dips. 
Other algorithms such as the finite-difference ωX, make use of the Fourier transform 
to increase the accuracy of the computation. 

The phase-shift method uses equation (5) in its exact form and is repeated with an 
extra expression as 
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Note that the coefficient a on the right side of the equation is independent of z 
(assuming V is constant at this depth z), and that the solution to this equation is the 
exponential function 

 ( ) azP z e= . (8) 

Adding a δz to the depth z in this equation we get 
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or with all variables, 
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Equation (10) informs us that propagating energy on the z layer to the next layer at 
z+δz is easily accomplished in the frequency-wavenumber transform domain by 
multiplying each point by a constant, and that the constant is an exponential term or a 
complex number with unit amplitude. 

The method is theoretically accurate when a constant velocity is used for each 
extrapolation step. However, the velocity may vary for each depth increment allowing 
a theoretically accurate migration when the velocities vary only with depth. 
Approximations to the phase-shift method, such as phase-shift plus interpolation 
(PSPI), interpolate a new depth increment from a number of constant velocity 
extrapolations, which then allow the velocity to vary both laterally in x and vertically 
in z. The theory of the phase-shift method may also be used in an ωX method that 
extrapolates a surface in which the wave number is transformed back to distance x, 
for a volume V(x, z, ω), enabling velocities that vary in both x and z. 

RESOLUTION 
In the early 1980’s many processing supervisors were reluctant to use migration on 

data that contained flat events, due mainly to the expense. They correctly assumed 
that perfectly flat events should not change after migration, but did not recognize that 
events that appeared to be flat, could actually contain anomalous structure. 
Fortunately, it was recognized that events on a stacked section have a horizontal 
resolution that is described by the Fresnel zone, and that horizontal events containing 
anomalies are spatially smeared and may not be visible. Migration collapses these 
Fresnel zones, leaving the spatial resolution to be theoretically the same as the 
temporal resolution. However, practical limitations such as the aperture of the 
diffractions or the approximations used in the migration algorithm do reduce the 
spatial resolution. 

CONCLUSIONS AND COMMENTS 
All migration methods are based on various solutions to the wave equation. The 

Kirchhoff method is an integral solution to the wave equation, while the FK method 
makes use of the Fourier transform. The downward-continuation method utilizes a 
number of techniques to solve the wave equation such as the finite-difference method 
or the phase-shift method. 

The principles of poststack migration have been applied by the seismic industry in 
various forms for the last fifty years and will continue for a number of years to come. 
These poststack migrations operate on a stacked section that is assumed to have zero 
offset. However, the process of stacking common midpoint gathers is only valid for 
horizontally layered media. Data that contains dips or truncated events will not stack 
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all the reflected energy to the correct zero offset location. It is prestack migration that 
eliminates conventional stacking and enables all energy to be focused correctly. 

In the early 1980’s, considerable effort was required to convince the industry that 
migration was necessary, especially for flat data. Today, the same effort is required to 
convince the industry that prestack migration is necessary, especially for flat data. 
This topic will be discussed in the next paper of this series, “Review of seismic 
imaging: prestack”. 
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