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ABSTRACT 
The kinematics of prestack data considers an arbitrary offset between the source 

and receiver. The added dimension of the source-receiver offset defines a prestack 
volume where the location of source gathers, constant offset sections, common 
midpoint gathers, etc. are identified. Reflection energy from horizontal reflectors, 
dipping reflectors, or scatterpoints can be modelled to these gathers using the double 
square-root equation. A reversal of these modelling processes describes the various 
forms of prestack migration. 

Conventional moveout correction and stacking of common midpoint gathers is 
based on the assumption of horizontal reflectors and hyperbolic moveout. The 
moveout correction of energy from dipping reflectors will not relocate the energy at 
the reflection point, even though the moveout is hyperbolic. In addition, prestack 
energy from a scatterpoint will not stack to the zero-offset hyperbola: i.e. diffractions 
don’t stack. Prestack migrations are required to focus this energy. 

Offset raypaths and prestack modelling techniques are reviewed to provide a 
foundation of the principles from which prestack migrations are derived. The 
objective is to acquaint the reader with the kinematics (traveltimes) of the prestack 
migration processes, and leave the discussion of amplitudes to the third article in this 
series. 

With the intent to make this paper more readable, references have not been 
included. Instead, the interested reader should consult the references that are 
contained in my SEG course notes (Bancroft 2000).  

INTRODUCTION 
Raypath traveltime, the RMS assumption, and the double-square-root equation 

In the first part of this series of papers, “Review of seismic imaging: poststack”, 
included in this Report, the kinematic equation for the normal moveout (NMO) 
correction and zero-offset Kirchhoff time migration was presented. That same 
concept is repeated for a source ray that leaves a source location and travels to a 
scatterpoint, and a receiver ray that leaves the scatterpoint and travels to a receiver. 
For a prestack time migration, the one-way traveltimes of the source and receiver 
raypaths Ts and Tr are computed using the RMS velocity that is defined at the 
scatterpoint. As in the poststack case, the traveltimes for depth migrations are 
estimated by raytracing or times computed on a grid.  
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Figure 1 shows a source and receiver raypath with displacements hs and hr from 
the surface location of a scatterpoint, and with corresponding traveltimes Ts and Tr. 
The vertical two-way traveltime is defined by T0 as in the zero offset case. I repeat for 
emphasis, that the velocity used for NMO correction, or source or receiver traveltimes 
for a Kirchhoff time migration, are computed using the RMS velocity that is defined 
at the scatterpoint. 

 

FIG. 1. Ray diagram for an offset trace. 

The travel time for the source ray Ts is computed using the triangle containing the 
source ray and half the zero-offset time T0/2 giving 
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and similarly the traveltime for the receiver ray Tr is computed with 
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The total travel time T=Ts + Tr becomes 
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which is usually referred to as the double-square-root (DSR) equation. It is this 
equation that defines the travel times for any source or receiver to one scatterpoint. 

 

FIG. 2. Ray diagram for an offset trace. 
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When we only have one scatterpoint, it is convenient to define the origin at the 
surface location of the scatterpoint and define an input trace by its relative midpoint 
location. We therefore write equation (3) for the geometry in Figure 2, defining the 
surface distance from the scatterpoint to the midpoint (MP) as x, and the distance 
from the midpoint to the source or receiver as h, i.e.  
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x h x hT TT
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Moveout correction for a dipping reflector 

Even though the DSR equation is slightly complex for a scatterpoint, the moveout 
for horizontal or dipping linear reflectors, in a constant velocity medium is exactly 
hyperbolic. Normal moveout may be applied to a common midpoint (CMP) gather to 
flatten the reflection energy by using stacking velocities. This simplicity is derived 
using a reflector with dip b shown in Figure 3, along with two raypaths that have a 
CMP. The green raypath has a colocated source and receiver at CMP with a reflection 
point Ro, while the blue raypath has a source at S and receiver at G with half offset h, 
and its reflection point at Rh. 

The location of the offset reflection point Rh can be found using the image of the 
receiver Gi about the dipping event. The length of the offset raypath S-Rh-G is equal 
to the direct distance S-Gi. Half of this distance is defined by CMP-N identified by a 
red dashed line, and may be proved by considering the similar triangles (S, Rh, G) and 
(CMP, N, G). In a constant velocity medium V, the offset travel time T may be used 
to define the length of the raypath, i.e. S-Gi = VT, and the corresponding half distance 
by CMP-N = VT/2. Similarly the length of the zero-offset raypath is CMP-R0 = 
VTdm/2. These two times are plotted on the trace below CMP with the appropriate 
time scale. (One might expect the symbol T0 to be used in place of Tdm; however T0 is 
reserved for the vertical zero-offset time as used in the first three equations.)  

   
a)       b) 

FIG. 3. Geometry of dipping reflector for zero- and fixed offsets: a) emphasizing the ray path, 
and b) the geometry for dip-dependent MO. 
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It is the objective of moveout correction to shift energy on the CMP time-trace 
from time T to the zero-offset time Tdm. I will refer to this type of moveout for a 
dipping reflector as dip-dependent moveout (DD-MO). DD-MO is computed using 
features extracted from Figure 3a and highlighted in Figure 3b. Note the triangle 
(CMP, R0, N) has two sides defined by the zero offset and offset traveltimes. The 
third side R0-N is equal to the line Q-G that has the same geological dip β. The length 
of this line is defined using the triangle CMP-Q-G and is given by 

 0, , cosQ G R N h β= = • . (5) 

The three sides of the triangle are related by the Pythagorean theorem giving 
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Expressing this equation in familiar form we get 
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in which we now define the stacking velocity Vstk to be 
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β
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The right side of equation (8) is hyperbolic and applies for any CMP location, or 
for any half-offset h. This result is very significant and tells us that even for a 
constant velocity medium with a dipping reflector: 

• the moveout is exactly hyperbolic for all traces in a CMP gather, and that 

• dip-dependent moveout (DD-MO) correction requires a higher velocity Vstk. 

This result may appear to be an ideal solution that simplifies seismic processing, 
however there is one major problem: the location of the reflection points. Note that 
the offset reflection point Rh is updip from the zero-offset reflection point R0. In fact, 
all traces in the same CMP gather will have reflection points that move up-dip with 
increasing offset. DD-MO and stacking of this dipping reflection energy in a CMP 
gather will therefore smear the energy along the dipping reflector. We will see in a 
later section that, for a given reflection point on a dipping reflector, we must gather 
the energy from a path in the prestack volume that moves down-dip as the half-offset 
h increases. 

Typical of geophysical practice, equation (8) is extended to include RMS 
velocities giving 
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The stacking velocity Vstk is usually reserved for the moveout correction of dipping 
events, and the RMS velocity Vrms for the moveout correction of horizontal events and 
for migrations. (This means that we now use the RMS velocity for the best hyperbolic 
fit to the diffraction rather than the more formal definition that matches the moveout 
curvature at zero offset.)  

A seismic data processor automatically picks the stacking velocity Vstk when 
flattening NMO-corrected reflections in a CMP gather, and may be unaware that they 
are higher than Vrms when stacking dipping events. This creates a potential problem 
when estimating interval velocities for geological continuity or for migrating data. 
These processes expect RMS velocities and will produce errors in structured areas if 
Vstk is used. Therefore, a process that converts stacking velocity Vstk into RMS 
velocities Vrms, using equation (9), should be used when processing structured data. 

Prestack volume P(x, h, t) for 2D data 
Poststack data assume the source and receiver are colocated or are at the same 

position. Prestack data assumes that there is a finite distance 2h between the source 
and receiver. The half-offset parameter h could be a vector that includes direction; 
however, for 2D data that is acquired in a single line on the surface, h can be 
simplified to a positive or negative value. The inclusion of h adds another dimension 
to the input data creating three-dimensional prestack data P(x, h, t) for a 2D line. 
Similarly, 3D data becomes four dimensional in prestack P(x, y, h, t). The prestack 
volume for 2D data P(x, h, t) is illustrated in Figure 4a, showing the location of a 
zero-offset trace in green and a small-offset trace in red. Only the positive range (or 
possibly the magnitude) of h is shown, with zero-offset on the front face of the 
volume. Note the three equal distances identified by h around the CMP location.  

For a 2D seismic line, the volume is filled with traces and there are a number of 
ways to organize this input data such as source (or shot) records, constant-offset 
sections, or common midpoint gathers. These three arrangements of 2D data are 
illustrated in Figures 4b, 4c, and 4d. The shot record in Figure 4b contains blue traces 
along a line that is 45 degrees to the zero-offset plane. The receivers are to the left of 
the source with a both a CMP location and offset equal to h. A selection of data at a 
constant offset is illustrated in part (c) and a CMP gather in part (d). 

Specular energy from a horizontal and dipping reflectors in the prestack volume 
A horizontal reflector in a constant velocity medium V is illustrated in the prestack 

volume shown in Figure 5a. The vertical timescale is plotted with the zero-offset two-
way time that is equal to the depth of the reflector. The horizontal reflector and zero-
offset reflection are shown coincident on the front surface with zero-offset (h=0) and 
time T0. The two-way traveltime T of the specular (or mirror-like) energy for offset 
data forms a hyperbolic cylinder (variations with h but not in x), with moveout that is 
exactly hyperbolic as defined by the normal moveout equation  
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A dipping reflector and its prestack reflection in a constant velocity medium V are 
shown in Figure 5b, also with the vertical time scale that matches two-way time with 
depth. The dipping reflector with dip β is shown in brown, and the corresponding 
zero-offset reflection in blue with dip α. A zero-offset raypath that is normal to the 
reflector is shown in brown, along with its corresponding vertical time in blue, which 
is located on the zero offset reflection. A poststack migration would move energy 
from the location at this time point to the corresponding location on the dipping 
reflector. The moveout for a dipping reflector has been defined by equation (7) and is 
also exactly hyperbolic for a CMP gather as illustrated by the light blue curve, 
however, the hyperbolic shape is defined by the stacking velocity that was defined in 
equation (8). It may appear that conventional processing of moveout correction, 
stacking, and poststack migration would gather the energy reflected from the point on 
the reflector. That is not the case as the offset reflected energy in the CMP gather 
comes from points up dip from the zero-offset reflection point as described above. 
The actual location of energy from the reflector point will be described in a following 
section. 



Review of seismic migration: Prestack 

 CREWES Research Report — Volume 13 (2001) 557 

   

a)       b) 

   

c)       d) 

FIG. 4. Prestack volume showing in a) the location of a zero offset trace in green and an 
offset trace in red, b) traces in a source record, c) traces in a constant offset section, and d) 
traces in a common midpoint (CMP) gather. 

A scatterpoint’s reflection in the prestack volume 
We will now use the double-square-root equation (4) to define a traveltime surface 

from one scatterpoint within the prestack volume P(x, h, t). This surface is displayed 
in Figure 6 with parts (a) and (b) showing front and rear views. Since its shape 
resembles the rounded pyramid on the Gaza plateau in Egypt, it is referred to as 
Cheops pyramid. Only half of the pyramid is displayed by using only positive values 
for h. There are a number of highlighted curves on the pyramid’s surface. The orange 
curve in Figures 6a and 6b represent the zero-offset hyperbola that may be found 
when h=0 in equation (4), i.e., 

 ( ) ( ) ( )2 22 2 2
20 0

0 0 02 2 2

4
4 4h h

rms rms rms

x h x hT T xT x T
V V V= =

+ −
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giving the kinematic equation of a diffraction for a poststack Kirchhoff migration 
operator. 
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a)       b) 

FIG. 5. Prestack volume (x, h, t or z) showing a) a horizontal reflector, and b) a dipping 
reflector. 

The black curve in Figure 6b represents the single CMP gather that passes through 
the scatterpoint, where the displacement x is zero, giving the normal moveout 
equation (10), i.e. 

 ( ) ( ) ( )2 22 2 2
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0 0 02 2 2

4
4 4x x

rms rms rms

x h x hT T hT h T
V V V= =

+ −
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The red curve represents all the other CMP gathers that do not pass through the 
scatterpoint. These curves are not hyperbolic and conventional moveout correction 
will not allow all the energy to stack at the desired zero-offset location, i.e. 
diffractions don’t stack, even in a constant velocity environment. At zero-offset, the 
curvature of this red curve matches the curvature of a DD-MO hyperbola that uses the 
seismic dip (α) on the zero-offset diffraction to estimate the stacking velocity Vstk. 
This curvature matching as small offsets is one reason why offset-limited seismic 
processing has been successful in areas with dipping reflectors. In contrast, a prestack 
migration can include the larger offsets when using the DSR equation. 

A constant offset diffraction is identified by the green curves. These curves are 
also non-hyperbolic, requiring the full DSR equation, and tend to be flatter at the 
apex.  
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…  

a)      b) 

   

c)      d) 

FIG 6. Scatterpoint traveltimes or Cheops pyramid in the prestack volume (x, h, t), showing a) 
a front view, b) a rear view, and c) and d) also with rear views showing various hyperbolic 
and non-hyperbolic curves. 

Figure 6c shows the hyperbolic intersection of a radial plane through Cheops 
pyramid. This interesting hyperbolic feature has led to special prestack algorithms 
that include radial-plane migrations and migrations in the tau-P space. Figure 6d 
shows the intersection of vertical planes, at 45 degrees to zero-offset, which represent 
source gathers. The intersection of these vertical planes with Cheops pyramid, define 
the shape of diffractions on the source gathers. It is interesting to note that all these 
diffractions have the same hyperbolic shape. 

Figure 7a shows the effect on the traveltime surface when conventional NMO 
correction is applied to the traveltimes defined by Cheops pyramid. Figure 6b shows 
the desired traveltime correction, which has the same hyperbolic traveltimes at all 
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offsets. Stacking, or summing this energy in Figure 6b to zero offset will produce the 
maximum energy on the zero offset diffraction, ready for poststack migration. The 
prestack process of dip moveout (DMO) converts energy from the shape in Figure 7a 
to the hyperbolic cylinder shape in Figure 7b. 

It is the goal of prestack migration to collapse all the prestack energy back to the 
scatterpoint. For a prestack time migration, that energy lies on a surface defined by 
Cheops pyramid  

   

a)       b) 

FIG 7. NMO processing of scatterpoint energy with a) showing the NMO corrected 
traveltimes, and b) the ideal corrected traveltimes. 

Modelling with Cheops pyramid. 
In the first article of this series, I demonstrated diffraction modelling in which the 

energy of each point on the geological cross-section (all possible scatterpoints) is 
spread along its corresponding diffraction curve. We can accomplish the same task in 
the prestack volume by extending the zero-offset diffraction to include all offsets of 
the corresponding Cheops pyramid. Consider the horizontal reflector in Figures 8a 
and b. Each scatter point along the reflector becomes a Cheops pyramid (only one 
shown) and the hyperbolic surface is constructed, while the energy below this surface 
is destructively cancelled. The construction and cancellation of this energy is 
dependent on the trace spacing, velocity, and frequency content. 

Each Cheops pyramid will have a band of tangency with the hyperbolic reflection 
surface as illustrated in Figure 8b. 
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a)      b) 

FIG. 8. Two perspective views a) and b) of a prestack surface from a horizontal reflector with 
one scatter point and its Cheops pyramid. 

The modelling of a dipping reflector is illustrated in Figure 9 where the dipping 
reflector is shown in red on the zero-offset surface, and the zero offset reflection in 
blue.  

 

FIG. 9. Prestack volume showing a dipping reflector and its reflection surface. 
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One scatterpoint on the dipping event and its corresponding zero-offset location is 
also shown. Once again, each point on the dipping reflector is modelled with a 
Cheops pyramid (only one shown in light grey) to reconstruct the prestack reflection 
surface. We have already shown that the dipping reflector surface (in dark grey) is 
exactly hyperbolic in the CMP gathers. However, the reconstruction of energy is not 
along the CMP gathers of the yellow dashed line, but along the line of tangency 
identified by the green line, which moves down-dip as the offset is increased. This 
specular energy from the dipping reflector lies along the band of tangency that 
surrounds the green line. All other energy on the Cheops pyramid that is below the 
reflection surface will destructively cancel. 

As in the poststack case, we reverse the prestack modelling procedure to perform 
the prestack migration. Note in Figure 9 that the desired specular prestack energy that 
should be summed to the scatterpoint lies along the band that surrounds the green line 
of tangency. In the actual migration algorithm, energy on the entire Cheops surface 
will be summed because we don’t know where the specular reflection energy lies, and 
we hope that the sum of the specular energy is larger that the noise summed on the 
other portion of the summation surface. 

Diffractions on a source gather 
Consider the geometry of one source and a continuum of many receivers on the 

surface above a single scatterpoint as illustrated in Figure 10. 

 

FIG. 10. A diffraction from one scatterpoint on a source gather. 

This diagram is plotted with two-way time and with the “traces” below the surface 
location of the receiver (not at the CMP location). Assume the velocity is unity and 
that time is represented by distance. The traveltime of the scatterpoint diffraction is 
the sum of the source ray traveltime Ts (in red) and the receiver ray traveltime Tr (in 
blue). Note that Ts is always constant and independent of the receiver ray path. The 
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shape of the diffraction is entirely due to the traveltime of rays from the scatterpoint 
to the receivers. Changing the relative location of the source will alter the vertical 
location of the diffraction but not its shape. 

Figure 11 shows many scatterpoints that are located at the same depth, and their 
corresponding diffractions. Note that all diffractions have the identical shape, and that 
the distance from the source to the scatterpoint determines the vertical position of the 
diffractions. An interesting observation on this figure is that the reflection energy 
from a horizontal reflector will be the envelope of the individual scatterpoint 
diffractions. 

 

FIG.11. One shot above many scatterpoints at the same depth produce a source record with 
diffractions that have the same shape. 

In Figure 11, there is one source and a continuum of receivers on the surface that 
are above a number of scatterpoints at the same depth. A similar image could also be 
created from one receiver and a continuum of sources along the surface to form a 
(common) receiver gather. Also note the similarity to Figure 6d that contains one 
scatter point and a number of source-gathers that intersect the Cheops pyramid, all 
with the same diffraction shape. 

Diffraction on a constant offset section 
Figure 12 represents a constant offset section in which all traces have the same the 

source-receiver offset defined by the distance 2h. The figure contains one scatterpoint 
and the kinematics of its offset diffraction shown in red. For reference purposes, a 
zero-offset diffraction is shown in blue.  

At large displacements x from the scatterpoint, the offset diffraction tends to the 
zero-offset diffraction. At small displacements, the offset diffraction tends to flatten 
with its apex below the scatterpoint. This offset diffraction shape is defined by the 
DSR equation and is similar to the green line on Cheops pyramid in Figures 6a and 
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6b. NMO correction would move the apex of the offset diffraction to the apex of the 
zero-offset diffraction, however all other points would move to times less than the 
zero-offset diffraction as indicated in Figure 7a. 

 

FIG. 12. A constant-offset section showing a scatterpoint, offset diffraction in red, and a zero-
offset diffraction in dashed blue. The source receiver offset is defined by the distance 2h. 

The energy in a constant-offset section is not easily created by using the exploding 
reflector model and is not easily migrated with a downward-continuation process. 
However, modelling and migration are very easily accomplished using the 
scatterpoint and diffraction concepts. 

PRESTACK MIGRATION ALGORITHMS 
Brute force Kirchhoff 

If the input data was acquired with a sufficiently long recording time, energy from 
one scatterpoint could be found in every input trace. A brute-force method of 
Kirchhoff migration could start by defining a single migration point with its vertical 
zero-offset time T0, and then searching through all the input traces to find that energy 
that is located at the time defined by the DSR equation, then weighting and summing 
the energy back to the scatterpoint. This procedure would be repeated for all points in 
the migrated output section. 

A more efficient method might consider all the scatterpoints in a migrated trace (or 
group of migrated traces) and then search through the input traces for the appropriate 
energy. The efficiency is improved when there is a maximum recording time that 
limits the range of input traces to some practical migration aperture, or if some type 
of dip limit is imposed. 

Prestack Kirchhoff migration is based on the scatterpoint principle that assumes 
reflectors may be defined by scatterpoints, and that prestack seismic data becomes the 
superposition of the corresponding Cheops pyramids; i.e., summing over the Cheops 
pyramids to relocate energy back to the scatterpoints. However, the actual specular 
reflection energy lies on a prestack surface, and only the energy that is tangential to 
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the Cheops pyramid is summed to the scatterpoint. Since the computer algorithm 
doesn’t know where the reflecting surfaces are, all possible surfaces are summed; i.e., 
all of Cheops pyramid is used. It is assumed that sum of the specular energy in the 
area of tangency exceeds that of any noise summed over the remaining surface of the 
pyramid. True diffracted energy, such as that produced by a fault, will have energy 
spread over a larger area and will use more area on the summation surface of Cheops 
pyramid. 

There are some migration algorithms that estimate the geological dip, and limit the 
range of summation to an area close to the assumed area of tangency. These 
algorithms may run faster and have a better signal-to-noise (SNR) than the more 
general algorithms. However, they must be used with care, as errors in the initial 
velocity model will tend to be “verified” by the migrated result. 

Practical algorithms usually migrate data in either source gathers, common offset 
sections, or a combination of source and receiver gathers. These algorithms leave the 
data with some form of prestack offset that can then be used to evaluate and improve 
the velocity estimates or to provide amplitude versus offset (AVO) analysis. 

Kirchhoff source gather migration 
Direct Kirchhoff 

The kinematics of a direct Kirchhoff migration of a source record are quite simple 
and similar to the poststack Kirchhoff migration; i.e. define a scatterpoint location, 
compute the diffraction shape, and sum the energy in the diffraction back to the 
scatterpoint. All that is required is to be able to define the diffraction shape that is 
identified in Figure 10 with traveltimes is computed by the DSR equation (13) that 
has been modified for the origin at the source location, with the distance to the 
scatterpoint xs, and the diffraction offset hg.  
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That’s all for the kinematics. The amplitudes need a little more work to take into 
account such things as the length of the source ray. 

Combination of downward continuation and Kirchhoff 
Another method of migrating a source gather combines a downward continuation 

process that collapses the shape of a diffraction, while a Kirchhoff type migration is 
used to compute the traveltime to the apex of the diffractions. Consider Figure 11 
with many scatterpoints at a fixed depth. Downward continuing the source gather 
(with a conventional algorithm) to the depth of the scatterpoints, will collapse the 
diffraction energy to a point. For a time migration, that point will be at the apex of the 
diffractions, and is represented in the figure by the green dashed line. The time of this 
green line is computed using Kirchhoff concepts, which combine the traveltimes of 
the source ray and vertical receiver ray, for scatterpoints at the depth of the downward 
continuation. This time is often referred to as the imaging condition, or time where 
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the migrated section is focused. A migration algorithm then maps the data at the 
imaging condition to the appropriate spatial position and the two-way time T0 on the 
migrated section. For a depth migration, energy would be relocated to the 
scatterpoints. 

A comment on the migration of source gathers 
A source gather usually has a full complement of traces at all offsets and can be 

migrated with little concern of aliasing. However, energy from dipping or truncated 
event propagates beyond the boundaries of the original source gather to create larger 
offset traces. These larger offset traces may not represent the exact geological 
structure, but are required for its reconstruction when summed with other source 
records. It requires many source gathers to be summed to reconstruct the geological 
structure, and aliasing may occur if there are an insufficient number. 

S-G method 
The shot-geophone (S-G) method (we would now call it a source-receiver 

method), is based on a downward continuation method that alternates between the 
source and receiver gathers. In source gathers, the diffractions are defined by the 
depth of the scatterpoints relative to the receivers, and in receiver gathers, the 
diffractions are defined by the depth of the scatter points relative to the sources. By 
alternating the downward continuation (D-C) increments between the source and 
receiver gathers, the diffraction energy in both gathers will collapse towards the 
scatterpoints on the appropriate zero offset traces. 

The alternating procedure of the S-G method is illustrated using Figures 13, 14, 
and 15. Figure 13 shows a simple geometry with sources and receivers at each station 
above a scatterpoint. Figure 14 shows source and receiver gathers with 14a showing 
the source gathers. These source gathers are D-C to the depth of the scatterpoint with 
one depth increment from the surface producing the source gathers in Figure 14b. The 
data are then sorted to receiver gathers in Figure 14c where all the energy, from the 
single scatterpoint, is collected into one receiver gather. These receiver gathers are 
then D-C to the depth of the scatterpoint, collapsing all the energy to one point as 
illustrated in Figure 14d. 

 

FIG.13. An illustration of an acquisition geometry above a scatterpoint 
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a) Input source gathers     b) D-C source gathers 

  

c) Sorted receiver gathers    d) D-C receiver gathers 

FIG. 14. Shot-Geophone time migration to the depth of a scatterpoint showing a) input source 
records, b) the source records downward continued to the depth of the scatterpoint, c) data 
from (b) sorted to receiver gathers, and d) the receiver gathers after downward continuation 
to the depth of the scatterpoint. 

This same procedure is illustrated with Figure 15, which contains a plan view of 
Cheops pyramid. Plan views of source records are identified by the black lines that 
are at 45 degrees to zero-offset. Also shown is one receiver gather identified by a 
green line that is normal to the source lines. (The other receiver gathers would lie in a 
similar direction and pass through the zero-offset of the source records but are not 
shown.) 

The single scatterpoint in Figure 15 produces identical diffraction shapes on all the 
initial source lines where they truncate Cheops pyramid. Downward-continuing these 
source-gathers to the depth of the scatterpoint will move energy to the peak of the 
diffractions that are identified by the red dots, corresponding to Figure 14b. After 
sorting the data to receiver gathers, all the red dots lie on the one receiver line that 
passes through the scatterpoint at the apex of the pyramid corresponding to Figure 
14c. Downward continuation of the receiver lines to the depth of the scatterpoint will 
also collapse the remaining diffracted energy to the apex of the diffraction that is at 
zero offset in both gathers. All the energy on the surface of Cheops pyramid is now 
focused to the one trace at the scatterpoint. 

The normal D-C process is accomplished with many small depth increments, with 
the sorting between source and receiver gathers at each depth increment. In real data, 
the prestack volume is occupied by a very large number of Cheops pyramids, all of 
which, when downward-continued to the appropriate depth, should focus to 
scatterpoints or reflectors on the vertical plane at zero-offset. At each depth level, this 
focused energy is copied to the migrated section at the corresponding time or depth 
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level. The accuracy of the velocity model controls how well the data focuses to the 
zero- offset trace. 

 

FIG. 15. Illustration of the S-G method for one scatterpoint with a plan view of Cheops 
pyramid showing the source records by black lines and one receiver gather by the green line.  

In a source gather the trace interval is defined by the incremental distance between 
the receivers, and in a receiver gather the trace interval is defined the incremental 
distance between the sources. The example illustrated above had a source at every 
receiver location, which produces an equal trace interval in both the source and 
receiver gathers. However, most 2D data is acquired with sources at multiple 
increments of the receivers; i.e., a source at every fourth receiver location. Now the 
receiver gathers have a much larger trace spacing that may produce aliasing 
problems. Practical applications may therefore require some form of trace 
interpolation to reduce the trace spacing in the receiver gathers. 

The S-G method requires a tremendous amount of data sorting between source and 
receiver gathers. This sorting runs more efficiently on computers with a high-speed 
CPU and a large amount of memory, and where the sorting of traces can become an 
addressing process in programming languages such as ‘C’. 

Constant offset migration 
The migration of a constant offset section becomes a simple task when considering 

the diffraction illustrated by the green curve on Cheops pyramid in Figure 6b, or on 
the constant offset section in Figure 12. The traveltimes are defined by keeping the 
half-offset term hc constant in the double square-root equation (4); i.e., 
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Equation (14) is defined with the origin above the scatterpoint. When many 
scatterpoints define the geology, the origin can be placed at the left side of the 
section, then equation (14) may be written as 
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where xmig is the surface location of the migrated trace, and xmp is the surface location 
of the input trace. The migration aperture for one migrated sample at (xmig, T0) will 
cover the range defined by xmig - xmp and will have traveltimes T defined by equation 
(15). 

A constant-offset section usually has many missing traces and a number of 
constant-offset sections may be summed with the appropriate differential moveout 
correction to form a limited offset gather. These limited-offset gathers are then 
assumed to be constant offset sections with no missing traces, and can be migrated 
with a Kirchhoff algorithm to produce an image that is similar to the geological 
structure. Summing or stacking of all the migrated constant-offset sections should 
create a geological structure that has an improved signal-to-noise ratio that is better 
than any single constant-offset section. 

Amplitude scaling along the diffraction is a complex issue that is still being 
evaluated in the current research literature of inversion. A simple but effective 
scheme would use the weightings similar to the zero-offset case. 

Dip Moveout (DMO) 
In a constant velocity medium, NMO correction, DMO, and poststack migration 

are equivalent to prestack migration. In very smoothly varying velocities, such as a 
marine environment, DMO can be more efficient than prestack migration and reduce 
runtimes. However, prestack time migrations are typically based on the RMS velocity 
assumption that has a more general application.  

GDMO-PSI 
Gardner’s method of applying dip-moveout before NMO correction (GDMO) 

combined with the prestack imaging process (PSI) produces a potentially powerful 
prestack technique that produces prestack migration gathers with no velocity 
information. Reflection energy is confined to hyperbolic paths similar to the energy in 
a CMP gather. Analysis of these gathers produces accurate velocities, which are used 
to apply Kirchhoff NMO correction and stacking to complete the prestack migration. 
(Kirchhoff NMO correction implies that amplitude scaling and antialiasing filters 
accompany the moveout). The GDMO that is required for this process is expensive in 
computer runtimes, so approximations are used in commercial applications. 
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Equivalent offset method (EOM)  
The equivalent offset method of prestack time migration is based on prestack 

Kirchhoff migration and the RMS velocity assumption. Mapping of scattered energy 
directly to the prestack migration gather is accomplished through a process that 
converts the DSR equation to a hyperbolic form. The prestack migration gathers, 
which are referred to as common scatterpoint (CSP) gathers, require no DMO and are 
formed with no time-shifting of the input data. Accurate velocity information is 
extracted after the CSP gathers are formed and then Kirchhoff NMO and stacking 
complete the migration process. Since this method is based on Kirchhoff migration 
principles, arbitrary input geometries can be migrated to arbitrary migrated 
geometries. For example, a small window in a section, also known as a porthole, 
allows real-time interactive analysis of migration parameters such as the variation of 
dip limits, velocity tuning, or the effects of antialiasing filters. The prestack migration 
of various 3D projects acquired with different geometries and orientations may be 
accomplished without the need for re-gridding, or any arbitrarily located 2D line can 
be prestack migrated from a 3D volume of input data. 

The basic prestack time-migration algorithm of EOM described above has been 
extended to prestack depth migrations that include anisotropy, migrations from a 
rugged surface elevation, the prestack migration of converted wave data, the prestack 
migration of borehole data, and the estimation of statics based on prestack migrated 
models of the source records. 

COMPARISON OF A POSTSTACK AND PRESTACK MIGRATION 
Figure 16 compares a poststack time migration with a prestack time migration 

using EOM on a dataset that is essentially flat. The same single velocity function was 
used for both data sets. Note the anomaly, indicated at the time of the arrow, appears 
to be more evident on the prestack migration, illustrating the improved focusing that 
can be achieved with prestack migrations. 

CONCLUSIONS 
In a constant-velocity medium, NMO correction is only valid for horizontal 

reflectors. With dipping reflectors, the moveout in a CMP gather is hyperbolic, 
however the energy comes from reflection points that move up dip, smearing events 
along the reflector. The moveout energy from a scatterpoint is non-hyperbolic and 
will not stack to the zero-offset hyperbola, i.e. diffractions don’t stack. 

The correct focusing of energy requires a prestack migration processes that 
assumes the prestack kinematic surface is defined by the DSR equation or has the 
shape of Cheops pyramid. There are many algorithms that achieve this objective such 
as the brute force Kirchhoff method, where all input data is summed directly to the 
migrated samples. Other algorithms migrate data in source gathers or constant-offset 
sections, leaving the migrated data as some offset for additional processing, such as 
refined velocity analysis or amplitude versus offset (AVO) considerations. 
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a)       b) 

FIG. 16. A comparison of a) a poststack, and b) a prestack migration. 

Dip moveout (DMO) is a process that essentially performs a partial migration that 
maps offset energy to zero-offset, allowing a poststack migration to complete the 
prestack process. This method is much faster than true prestack migrations, but since 
it is based on constant velocity assumptions, its applications have been limited to 
areas with smooth velocity variations. 

Some prestack methods form prestack migration gathers in which the reflected 
energy is located at offsets that represent the actual distance between the scatterpoint 
and the location of the source and receiver. This is in contrast to methods that migrate 
source gathers or constant-offset sections that leave the prestack migrated data at an 
offset defined by the source-receiver half-offset. Velocity analysis performed on 
gathers that use the geometry of the raypaths rather than the source-receiver offset 
will converge more rapidly. 

THE NEXT PAPER IN THIS SERIES 
The first two papers in this series essentially address the kinematics of post- and 

prestack migration as described in my SEG course notes. The next paper will attempt 
to address some of the issues that involve amplitudes, starting with the method of 
diffraction stacking and matched filters, solutions to the wave-equation, and then the 
basic concepts leading to inversion. 
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