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ABSTRACT 
A common problem in seismic tomography is the inadequate amount of data 

required for accurate traveltime inversion. The inherent nature in which data is 
acquired and the subsurface velocities of the survey area can result in a nonuniform 
distribution of raypaths. In such instances the statistical nature of tomographic 
inversion biases the solution to reflect the acquisition instead of the geologic 
properties. This work outlines a method for using the quasi-null space, a measure of 
inversion reliability, to produce a more constrained solution. In this method, two 
seismic experiments with different acquisition geometries are used to determine 
velocity models over the same geologic region. Using the well-constrained portions 
of the two resulting velocity models, as determined from the quasi-null space, a final 
tomogram is determined. Testing shows that the combination of two seismic 
experiments over the same geologic model and null space analysis yield superior 
tomograms. 

INTRODUCTION 
Interpreting seismic data in complex structures requires accurate subsurface 

images, many times obtained only through prestack depth migration. Prestack depth 
migration inherently requires an accurate velocity model that can be determined via 
tomography. Tomographic methods use recorded traveltimes for velocity model 
estimation. An initial velocity model estimate is updated attempting to minimize the 
error between the modelled and observed traveltimes. It is assumed that the velocity 
model yielding the minimum residual traveltimes accurately represents the subsurface 
velocities. 

Two different types of tomography are utilized in this work: reflection and 
transmission. Transmission tomography and in this work consists of crosswell 
acquisition geometries and deals with purely transmitted signals. The direct 
traveltimes from source to receiver reveal information of the unknown parameters to 
be determined: the subsurface velocities of the survey area. Reflection tomography 
attempts to determine subsurface velocities from a signal that has been undergone 
reflection at seismologic impedance contrast along its travel path between source and 
receiver. In this case, recorded traveltimes reveal subsurface velocities as well as 
reflector positions.  

Bishop et al (1985) presented a classic paper outlining the basic theory of seismic 
reflection tomography. Parameterizing both the velocities and reflector positions as 
unknown quantities, a final multi-layered velocity function was determined after 
various iterations of modelling, solving a set of overdetermined equations and model 
parameter adjustment. Lines and LaFehr (1989) presented the basic theory of 
transmission tomography using a crosswell experiment. The same inversion process 
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used in reflection tomography is used in the transmission problem except that only 
the velocities are parameterized. It has been shown that using transmission or 
reflection tomography, an accurate velocity model can be constructed. 

There is, however, a basic problem in tomography: the lack of data required to 
properly constrain the inversion. The acquired data inherently consists of an angle-
limited distribution of rays because of the nature of the acquisition geometry and 
velocity anomalies present within the earth. A non-uniform distribution translates into 
some areas of the subsurface receiving minimal or no ray coverage. Angle-limited 
acquisition results in the lack of linearly independent data required to resolve the 
subsurface properties. Both the lack of sufficient ray coverage and linearly 
independent data results in small singular values which when inverted bias the 
tomographic result. The consequence is the inability to obtain a unique geologic 
solution. A number of different techniques have been developed with the goal of 
improving the resulting velocity model by limiting the effects of the unconstrained 
parameters. Phillips and Fehler (1991) have given a review of popular regularization 
methods that emphasise the suppression of small singular values. Carrion (1991) 
developed a dual method in which the inversion uses both the data and imposed 
constraints which compensates for the lack of data. Bohm and Versnaver (1999) 
developed an iterative adaptive grid scheme based on null space identification and the 
resolution of the resultant velocity model. By modifying the cell size based on the 
reliability of the inversion, the cell size is increased or decreased so as to maximise 
both the reliability and resolution of the solution.  

The conventional tomographic method of determining subsurface velocities 
consists in proposing an initial model through which traveltimes are simulated and 
compared to recorded data. This work follows the same flow using a finite-difference 
approximation to the eikonal equation to model traveltimes and raypaths (Perez and 
Bancroft, 2000, Perez and Bancroft, 2001). Minimising the error between the 
modelled and recorded traveltimes determines velocities of the subsurface geology. 
However, fitting data traveltimes with the model response is a necessary but not 
sufficient criterion for finding the correct solution to the traveltime inversion 
problem. In an attempt to reach a unique solution a modification of the null space 
identification scheme is used. For a single velocity model, two different sets of data 
are acquired, each with different acquisition geometry. The ray coverage for the two 
surveys differs resulting in distinct illumination patterns of the subsurface. The 
tomographic solution and the null space are computed for each of the surveys. By 
identifying the better-constrained cells using the null space criterion a more 
controlled tomogram is ascertained. 

THEORY 

Tomography 
The inversion problem is presented using similar notation to that of Bishop et al 

(1985). Let x denote the horizontal distance along the earth’s surface and let z 
represent depth. The two-dimensional area of interest is divided into nx by nz square 
cells, each with a slowness denoted by s(j) numbered from left to right and top to 
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bottom. There are n reflectors in the model with depths denoted as zn(x). A column 
vector m is constructed containing all of the parameters that describe the model. In 
transmission tomography, the parameters consist of ( )nznx ⋅  velocities from s(1) to 
s(nx⋅nz). Reflection tomography requires the number of parameters to be 
( )nxnnznx ⋅+⋅ , which includes all of the slowness cells and the number of reflectors 
multiplied by the number of points describing the reflector.  

nz

nx

s1 s2 snx

s2·nxsnx+2snx+1

snz·nxs(nz-1)·nx

sj+1sj

z1(1) z1(2) z1(j+1) z1(nx+1)
nz

nx

s1 s2 snx

s2·nxsnx+2snx+1
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sj+1sj

z1(1) z1(2) z1(j+1) z1(nx+1)

 
FIG. 1. Schematic diagram illustrating notation used to formulate tomographic problem. 

A column vector t is also constructed, containing the recorded data of the survey. 
The number of entries in t is a function of the number of sources (ns), receivers (nr) 
and reflectors (n) in the model, equivalent to the number of rays (N) that have been 
recorded.  

The mathematical formulation of the tomographic problem is neatly presented in 
Lines and LaFehr (1989), and is summarized below. The traveltime for the ith ray, ti, 
can be thought of as a sum of the distance travelled times the slowness of each of the 
cells crossed by a given ray.  

 i
j

jij tmd =∑ , (1) 

where dij is the distance of the ith ray in the jth cell and mj is the slowness of the jth 
cell. In matrix notation the traveltime equations can be written succinctly as 

 tDm =  (2) 

where D, a Jacobian matrix, m is the slowness vector and t is the traveltime vector. D 

has elements dij that are the partial derivatives of time with respect to slowness 






∂
∂
s
t , 

corresponding to the distances travelled by the rays within a cell. Due to Snell’s law, 
in heterogeneous media equation (2) becomes nonlinear in slowness. However, model 
parameters are computed iteratively by solving linearized equations from some 
starting model. In full matrix form we have, 
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Since the initial model is usually incorrect it is useful to rewrite equation (2) as  

 tmD ∆=∆  (4) 

where ∆t is the residual traveltime, whose components correspond to the difference 
between the modeled and recorded traveltimes, and ∆m is the parameter update 
vector. The updated slowness solution is given by adding ∆m to the original vector m.  

To parameterize the reflector depth, it is included into the Jacobian matrix D and 
the model vector m. The partial derivatives of time are taken with respect to the 

unknown quantity, ( )





∂

∂
xz

t
n

, in this case the reflector depth and added into the 

Jacobian for each ray. This derivative has been computed analytically by Bishop et al 
(1986) and has the form 

 





−
−
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mm

mR
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where sij is the slowness of the cell, β is the angle of the reflector with respect to the 
horizontal, θ is the angle of incidence of the ray to the reflector, and xR, xm, xm-1 are 
points within the cell defining the reflector as shown in Figure 2. 

(xm-1,zm-1)

β

θ

(x,z)

(xR,zR)

(xm-1,zm-1)

β

θ

(x,z)

(xR,zR)

 

FIG. 2. Schematic diagram of reflector depth derivative. 

The resulting matrix equation has the form 
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Inverting for the Jacobian matrix yields a solution for parameter adjustment. 

Singular Value Decomposition 
The basis for solving nonlinear, least-square problems is through iteratively 

solving linearized equations. Parameters are continuously updated until either a 
minimal discrepancy level is reached between the model response and the 
observation, or the change between the updated model and the previous model is 
minimal. A simple explanation of the technique to be used is given by Lines and 
Treitel (1984). The linear problem consists of n observations denoted by the vector t. 
The model s is a function of p parameters. Letting s0 be the initial estimate, the initial 
model response is t0. The residual traveltime errors are then ∆∆∆∆t0 and the parameter 
adjustment values are ∆∆∆∆s. The initial equation is formulated as 

 tsD ∆=∆  (7) 

of which the formal solution is  

 tDs ∆=∆
−1

. (8) 

The difficulty in solving such an equation is that normally, in geophysical 
applications, the problem is not well posed. The Jacobian matrix, D, is 
overdetermined with the number of data points exceeding the number of model 
parameters. Thus an inverse to D cannot be found conventionally. A solution can be 
found however by decomposing D into three matrices whose product is D, 

 TVUD Λ= . (9) 

Here U is an n×p matrix whose columns contain p of the total n orthonormal 
observation eigenvectors ui that satisfy 

 iii

T
uuDD 2λ= . (10) 

V is a p×p matrix whose columns contain the p orthonormal parameter eigenvectors 
that satisfy 
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 iii

T
vvDD 2λ= . (11) 

Finally, ΛΛΛΛ is a p×p diagonal matrix containing at most p positive singular values that 
correspond to the positive square roots of the eigenvalues 2

iλ of DTD. The 
decomposition of D leads to the use of the Lanczos inverse,  

 T
L UVD 1

1
−

−
Λ= , (12) 

to solve equation (8). The solution becomes 

 tUVs T ∆Λ=∆ −1 . (13) 

Taking a closer look at the solution, written in its expanded form, reveals a weighted 
vector product sum 

 tuvtuvtuvs T
pp

p

TT ∆+⋅⋅⋅+∆+∆=∆
λλλ
111

22
2

11
1

. (14) 

The solution vector is the weighted sum of the p parameter eigenvectors vi with 

weights of 
i

T
i tu
λ
∆

. Thus if the weight is small then vi has little influence on the 

solution. Also if λi is small then the term 
i

T
i tu
λ
∆

will have a great influence on the 

solution. It is the small singular values λi, which are most problematic in inversion 
problems. 

Null space 
The null space is defined for matrices that are rank deficient. In such cases there 

exists a vector u0 such that 

 00 =uD . (15) 

With such a matrix D, and its appropriate vector u0, an infinite number of solutions to 
equation (7) exist since 

 ( ) sDuDsDusDt ∆=+∆=+∆=∆ 00 αα  (16) 

where α is any real number. When singular value decomposition is performed, a 
property of the matrix V is that the columns corresponding to the singular values 
equal to zero, constitute an orthonormal basis of the null space. Vesnaver (1994) 
defines the quasi-null singular values as those singular values below a given 
threshold. The quasi-null space is defined as the sum of squares of the entries 
columns of V whose corresponding singular values are above a predefined threshold. 
This is expressed mathematically as 
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 ∑= 2
iji Vm  (17) 

where only the values above the prescribed threshold are included within the 
summation. A map of this quasi-null space highlights the cells that are most reliable 
for traveltime inversion.  

Vesnaver proposed a change in cell size to limit the size of the quasi-null space. 
Increasing the cell size however reduces the resolution. The method proposed in this 
work uses two seismic datasets with different acquisition geometries over the same 
geologic model. Determining the quasi-null space for each, the more reliable cells of 
each inversion is chosen thus increasing the reliability of the inversion without 
reducing the resolution. 

RESULTS 
Three models are used to test the validity of the proposed method: a constant 

velocity model, a velocity model with a high velocity layer and a model with a high 
velocity anomaly in the middle. These three velocity models are shown in Figure 3. 
The background velocity for each is 3000m/s with the high velocity anomalies have a 
velocity of 3300m/s.  

 

(a) 

 

(b) 

 

(c) 

FIG. (3) Three models used to test tomgraphy: model 1 (a), model 2 (b) and model 3 (c). 

In the tomographic analysis that follows, a resulting velocity model was obtained 
by using both reflection and transmission tomography independently. The initial 
velocity estimate for the constant velocity model was 3300m/s. The two remaining 
models used an initial velocity estimate of 3000m/s. Three iterations were performed 
for each tomographic method with smoothing filter applied after each iteration. The 
two different acquisition geometries used mimic a crosswell and a surface reflection 
survey. For the crosswell survey the sources were placed vertically at 10m spacing at 
x=0. The receivers were also placed vertically with 10m spacing at x=500. 
Traveltimes were calculated along a 10 × 10m grid, while 50 × 50m cell sizes were 
used for inversion. 

Transmission tomography 
Using transmission tomography, the following results were obtained inverting for 

model 1. Figure 4 displays the velocity determined after three iterations.  
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FIG. 4. Transmission tomography inversion result for model 1. 

The result is very good with minimal discrepancy between the actual velocity model 
and the computed one. There is sufficient ray coverage to adequately sample the 
model. Smoothing the solution after each iteration assists convergence to a constant 
velocity field. 

Figure 5 shows the result in attempting to invert for model 2 after three iterations.  

 

FIG. 5 Transmission tomography inversion result for model 2. 

Note that the horizontal high velocity anomaly is present though the boundaries are 
not resolved in great detail. Thus, since there is a smearing over a larger number of 
cells, the velocity of the anomaly is less than it should be.  

Figure 6 shows the results of the inversion for model 3.  
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FIG. 6 Transmission tomography inversion result for model 3. 

This result is also encouraging, though there is an acquisition imprint in the solution. 
The high velocity anomaly is present and has been smeared horizontally. The 
dominant raypath in a crosswell experiment is in the horizontal direction, leading to 
the smearing seen. 

Reflection tomography 
Using reflection tomography, the following results were obtained in attempting to 

invert for model 1. Figure 7 displays the velocity determined after three iterations.  

 

FIG. 7. Reflection tomography inversion result for model 1. 

The solution converges nicely to a constant velocity model, comparable to the 
transmission experiment. Smoothing the velocity field after each iteration increases 
the rate of convergence for the constant velocity case as seen in the cross-well 
experiment. 

Figure 8 shows the results in attempting to invert for model 2 after three iterations.  



Perez and Bancroft 

730 CREWES Research Report — Volume 13 (2001)  

 

FIG. 8. Reflection tomography inversion result for model 2. 

The above result demonstrates the inability of a surface reflection survey to detect a 
horizontal velocity anomaly mainly due to its acquisition geometry. There are no 
raypaths that traverse the model without passing through the high velocity layer. The 
inversion cannot detect any anomaly and presents a result with an average velocity of 
the model. 

Figure 9 shows the results of the inversion for model 3.  

 

FIG. 9. Reflection tomography inversion result for model 3. 

As seen in the cross-well experiment, the above figure demonstrates how the 
acquisition geometry distorts the velocity anomaly along the dominant travel path of 
the experiment. The residual error between the modelled and recorded traveltimes 
demonstrates the non-uniqueness present within tomography. 

Integrated tomography 
As seen in the previous figures, the tomographic solution is biased by the 

acquisition geometry. Combining two experiments using the quasi-null space as a 
reliability criterion the resultant velocity models show a marked improvement in 
determining the velocity model. This is not represented in the residual error since 
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tomography is a statistical method that attempts to minimize the residual error 
regardless of the final velocity model. 

 Using a null space threshold of 0.1 of the maximum singular value, the null spaces 
of the three models were computed for both reflection and transmission tomography. 
Figure 10 shows the null space for model 1. 

 

(a) 

 

(b) 

FIG. 10 Null space for the crosswell (a) and reflection (b) experiment of the constant velocity 
model. A higher quasi-null space value corresponds to a more reliable cell. 

Figure 11 shows the integrated velocity model. This integrated model is a result of 
the combination of the well-constrained velocities of each section after one iteration 
of transmission and reflection tomography respectively. Alone, the edges of each 
survey are not as well constrained, but when combined, the surveys compliment each 
other and produce a superior tomogram. 

 

FIG. 11. Integrated constant velocity model. 

Without any filtering applied, the resulting velocity model is a smooth solution 
accurately representing the actual velocity model. The upper and lower edges of the 
tomogram are the relatively poorly constrained areas of both the transmission and 
reflection tomography. In general, since reflection tomography determines the 
reflector position as well as the velocity, the reliability of each cell is less than the 
respective cell for the transmission experiment. 
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Figure 12 shows the null spaces for model 2. 

 

(a) 

 

(b) 

FIG. 12. Null space for the cross-well (a) and reflection (b) experiment of the horizontal 
velocity model. A higher quasi-null space value corresponds to a more reliable cell. 

 

 

FIG. 13. Integrated velocity for model 2. 

Comparing to the results of the reflection and transmission experiment, the integrated 
result is similar to the transmission tomography solution. The reflection survey does 
not detect the horizontal layer and the quasi-null space analysis was able to correctly 
determine solution reliability as demonstrated in the integrated result. This shows that 
there can be a measure of reliability assigned to each cell helping to build an accurate 
velocity model.  

Figure 14 shows the null spaces for model 3. 
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(a) 

 

(b) 

FIG. 14. Null space for the crosswell (a) and reflection (b) experiment of velocity model 3. A 
higher quasi-null space value corresponds to a more reliable cell. 

Figure 15 shows the integrated velocity for model 3. 

 

FIG. 15. Integrated velocity for model 3. 

Figure 15 illustrates a more collapsed centre anomaly than is seen in either the 
reflection or transmission results. The smearing seen in the single experiments 
presents an ambiguity that is overcome using the quasi-null space analysis. A more 
resolved velocity model is determined by combining the well-constrained portions of 
each individual tomogram. Therefore mapping reliable and unreliable cells is an 
indication of whether the tomogram is accurately depicting the subsurface velocity 
structure. 

Figures 16 through 18 show the residual error as a function of iteration number for 
models 1, 2, and 3. The residual errors are computed by summing the squares of the 
difference between the recorded and modelled traveltimes. Each figure contains four 
lines corresponding to the errors of transmission experiment, the reflection 
experiment and the error of the integrated solution inserted into the transmission and 
reflection experiment.  
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FIG. 16. Residual traveltime error for model 1. 

 

FIG. 17. Residual traveltime error for model 2. 

 

FIG. 18. Residual traveltime error for model 3. 

The above figures demonstrate that the residual traveltimes are not always an 
accurate representation of velocity model correctness. The reflection tomography 
produces a model with very minimal residual error, however it does not accurately 
represent the actual velocity model. The quasi-null space is used as a tool to 
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overcome the solution ambiguity while still yielding acceptable residual traveltime 
errors.  

CONCLUSION 
The quasi-null space has been shown to be a powerful tool used to distinguish 

between well- and poorly constrained solutions. Examples of mapping the quasi-null 
space and integrating the well-constrained portions of two distinct experiments have 
been revealed more accurate solutions. The quasi-null space is able to overcome 
solution non-uniqueness and present better solutions even though the computed 
residual traveltime errors indicate otherwise. The integrated method provides a more 
reliable tomogram without a decrease in resolution and provides an accurate method 
for velocity model building.  
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