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Optimal Zoeppritz approximations 

Charles P. Ursenbach 

ABSTRACT 
New approximations are developed for RPP and RPS that are optimal in the sense that 

they preserve as much accuracy as possible with as much simplicity as possible.  In 
particular, they are expressed in a form that is pseudo-linear after the form of the Aki-
Richards approximation.  Thus they would be very simple to apply in an essentially exact 
non-linear inversion.  Accurate analogues of the two-term Shuey equation are also given 
for both RPP and RPS. 

INTRODUCTION 
 

The Zoeppritz equations describe the partitioning of energy among reflections and 
transmissions of compressional and shear waves at an interface (Aki and Richards, 1980).  
The coefficients for the various modes are dependent on the six parameters describing 
density (ρ1, ρ2) and velocity (α1, α2, β1, β2) of upper and lower earth layers, as well as the 
angle of the incident wave with respect to the normal.  The model upon which the 
Zoeppritz equations are based assumes plane waves impinging on a planar, non-slip 
boundary between two isotropic and elastic semi-infinite half-spaces.  Because of these 
assumptions, the Zoeppritz coefficients are not always accurate enough to describe real 
seismic responses and their amplitude variation with offset (AVO), but they have 
nonetheless provided much assistance in practical exploration geophysics. 

The same may be said of the Aki-Richards approximation (Aki and Richards, 1980).  
This approach recognizes that only four of the six earth parameters are independent, and 
may be represented, for instance, by β/α, ∆ρ/ρ, ∆α/α, and ∆β/β, where x = ½ [x1 + x2], 
∆x = (x2 − x1), x = α, β, ρ.  In the Aki-Richards approximation, the exact Zoeppritz 
coefficients are linearized with respect to the three contrast variables, ∆ρ/ρ, ∆α/α, and 
∆β/β, and this results in sufficiently simple expressions that amplitude variations with 
offset can be interpreted in terms of quantities relevant to exploration seismology.  Of 
course their usefulness is challenged for interfaces with large contrasts, but still their role 
has been, and continues to be, a significant one. 

One of the appeals of the Aki-Richards approximation has been its ease of application 
to inversion problems.  In this context we ask whether there would be a role for an 
approximation which is nearly as straightforward to apply as that of Aki-Richards, but 
which is also nearly as accurate as the exact results of Zoeppritz.  One obvious 
application would be to improve inversion results.  However, one of the more far-
reaching benefits may be because of the need to remove some of the assumptions of the 
Zoeppritz equations.  As their inadequacy in the presence of anisotropy, absorption, non-
planar interfaces, etc. becomes better understood, it is important to separate various 
contributions to error.  Accuracy with simplicity will be at a premium.  Thus retaining the 
framework of the Aki-Richards approximation while minimizing its error would be one 
valuable contribution to further development of AVO techniques. 



Ursenbach 

2 CREWES Research Report � Volume 14 (2002)  

In what follows we present an argument for what form an optimal Zoeppritz 
approximation should take for two key coefficients, the compressional and shear wave 
reflectivities, RPP and RPS.  We then develop explicit expressions and discuss their 
accuracy and application. 

 

RATIONALE OF METHOD 
 

It is instructive to consider how the Zoeppritz coefficients actually behave under 
various approximations.  Consider Figure 1 in which the exact value of RPP for a set of 
typical earth parameters is compared to the value of its Taylor expansion the parameter 
∆α/α, when the truncation is at the linear, quadratic, or cubic level in ∆α/α. (No 
approximations are made in ∆β/β or ∆ρ/ρ at this point).  It is clear that the higher the 
degree of terms that are present, the closer the approximation comes to the exact value.  
However it is equally clear that, near the critical angle, there is not any rapid convergence 
to an accurate result. 

 

Figure 1:  The value of RPP for various levels of approximation in ∆α/α.  No approximations have 
been made in ∆β/β or ∆ρ/ρ.  The specific earth parameters that have been used are ∆α/α = 
.3857, ∆β/β = -.1857, ∆ρ/ρ = .19524, and β/α = 0.4.  θ1 is the angle of incidence in the upper 
layer. 

In contrast, when the Taylor expansion is applied to ∆β/β instead of to ∆α/α, even the 
linear expansion is accurate up to the critical point, as shown in Figure 2.  In Figure 3 we 
see that for ∆ρ/ρ a linear expansion is good even past the critical point. 
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Figure 2:  The value of RPP for various levels of approximation in ∆β/β.   

 

Figure 3:  The value of RPP for a linear approximation in ∆ρ/ρ.   



Ursenbach 

4 CREWES Research Report � Volume 14 (2002)  

The trends observed in Figures 1-3 have been verified for a wide range of earth 
parameters.  It is reasonable that RPP is more sensitive to approximations in ∆α/α since, 
for typical geological interfaces, the first critical point is controlled by α2/α1 = 
(2+∆α/α)/(2-∆α/α).  It therefore seems reasonable to propose that an optimal 
approximation for RPP, at least for sub-critical angles and α2 > β1, consists of linearizing 
with respect to ∆β/β and ∆ρ/ρ only.  We will refer to this as a pseudo-linear 
approximation, primarily because of the form in which we will present it in a later 
section.  In Figure 4 we have compared this approximation against the exact RPP and 
against the Aki-Richards approximation. 

 

Figure 4:  Comparison of RPP expressions.  The pseudo-linear approximation, proposed above, is 
very similar to that of the linear approximation in Figure 2.  The principal weakness of the Aki-
Richards approximation appears to be in its estimation of the critical-point value. 

We now turn to consideration of the converted wave reflectivity, RPS.  Plots analogous 
to Figures 1-3 tell a very similar story for the behavior of approximations with respect to 
∆α/α and ∆ρ/ρ.  However, while a quadratic truncation with respect to ∆β/β is quite 
accurate, the linear truncation deviates slightly but visibly from the exact value.  We 
propose that an optimal approximation for RPS is to expand linearly in ∆ρ/ρ and 
quadratically in ∆β/β, i.e., retaining terms proportional to (∆β/β)2 and (∆β/β)(∆ρ/ρ). In 
principle we could also include the 3rd order term, (∆β/β)2(∆ρ/ρ), but we choose not to, as 
we have found to be less important than the other two, and it adds much more 
complexity.  In Figure 5 we present both the proposed approximation and one without the 
quadratic terms. 
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Figure 5:  Approximations for RPS compared to the exact result.  The �linear� line is linear in ∆β/β 
and ∆ρ/ρ.  The line marked �quadratic� has additional terms in (∆β/β)2 and (∆β/β)(∆ρ/ρ). 

RESULTS 
The formal approximations of RPP or RPS with respect to different variables were 

straightforwardly obtained using a symbolic mathematics program (Maple 7, 2002) in 
order to generate the plots in Figures 1-5.  However such formal results often extended 
over several pages and considerably more effort was required to distill this information 
into a compact and comprehensible form.  Our goal in this process was to find 
expressions as close as possible in form to the enduring Aki-Richards approximation.  To 
illustrate this we present, below, both the standard Aki-Richards reflectivities, RPP

A-R and 
RPS

A-R, as well as the results that we were able to obtain for the proposed pseudo-linear 
approximations, RPP

P-L and RPS
P-L.  Note that RPP

P-L is somewhat simpler that RPS
P-L 

because of the latter�s quadratic terms, but that both follow the Aki-Richards structure: 

 ρ
ρ

µ
µθ

α
β

α
α

θ
∆+∆







−∆=−

2
1sin2

cos2
1 2

2

2
RA

PPR
 (1) 

 

 










 ∆


















∆−+∆







−∆









=−

ρ
ρ

α
α

µ
µθθ

α
β

α
α

θθ
θθ 2

21

2

21
2

21

2
1

2
1sinsin2

coscos2
1coscos4

Q
R LP

PP
 (2) 

(Here arrows have been used to emphasize the analogous linear structure of the two 
equations.) 



Ursenbach 

6 CREWES Research Report � Volume 14 (2002)  

 










 ∆

















−+∆−=−

µ
µθ

α
βϕθ

α
β

ρ
ρ

ϕ
θ 2

2

sincoscos2
cos2
sinRA

PSR  (3) 

 

 

[ ] ( )


∆














−∆+

∆−












−

∆+
+





 ∆





















∆−
+∆+

×




 ∆+

−=−

µ
µ

β
βϕ

αα
θ

α
β

αα
ϕθ

α
β

ρ
ρ

αα
θαβ

β
βϕ

α
αθ

ϕ
θ

ρµµ

ρµρ

CC
P

CC
P

Q
R LP

PS

2
cos1

)]2/(1[
sin

)2/(1
coscos

2

)]2/(1[
sin)/(2

2
cos1

2
1cos2

cos2
sin

2

2
1

22
2

2
1

222

1
1

 (4)  

where 

 2
1

22 )]2/(1/[sin)/(1 ααθαβ ∆−−=P   

 
21 cos

2
1cos

2
1 θ

α
αθ

α
α







 ∆−+






 ∆+=Q   

 }sin)/()]2/(1[cos{cos2 1
2

1 θαβααϕθ +∆−−=S   

 

 



























 ∆−









−−






 ∆−

+=
P

S
S

Q
C 2

1
2

2

1
2

2

2
1

sin4
sin4

2
1

cos4
1

α
α

θ
α
β

θ
α
β

α
α

θ
α
β

ρ
  

 

 

























 ∆−

+






 ∆+

+=
Q

S
P

C

α
α

α
α

ϕθ
α
β

µ

2
1

8

2
1

coscos
1

2   

 

 
3

3
21

2

)]2/(1[
cossin8









∆−
=

α
β

αα
θθ

ρµ PQ
S

C   

and 

 
ρ
ρ

β
β

ρ
ρ

β
β

ρ
ρ

β
β

ρβ
ρβ

µ
µ ∆+∆≈



















 ∆







 ∆+∆+∆=∆=∆

=

−

22)(

3,2,1

3

2

2

n

nn

O   

 

 



Optimal Zoeppritz approximations 

 CREWES Research Report � Volume 14 (2002) 7 

θ1 is the angle of P-wave incidence and reflection in the first layer.  θ2 is the P-wave 
transmission angle in the second layer.  The Aki-Richards expressions employ the 
average θ = (θ1 + θ2) / 2.  Similarly, the angle ϕ  is the average of the angles of S-wave 
reflection, ϕ 1, and transmission, ϕ 2.  In the pseudo-linear expressions the angle ϕ  is 
defined slightly differently, namely, by the relation sinϕ  = (sinϕ 1 + sinϕ 2) / 2. The 
quantities sinϕ  and sinϕ differ by O[(sinϕ 1)3(∆β/β)2], so the difference is small, but still 
of the same order as the pseudo-linear approximation for RPS. 

It is clear how the pseudo-linear form of the above equations can be used in AVO 
inversions.  The pseudo-linear expressions are linear in the parameters ∆α/α, ∆ρ/ρ and 
∆µ/µ, as indicated by the arrows, and these play a role analogous to their counterparts in 
the Aki-Richards approximation.  If all other occurrences of ∆α/α, ∆β/β, and ∆ρ/ρ are 
initially set to zero, then all of the quantities in square bracketed will simplify to unity, 
and  ∆α/α, ∆ρ/ρ and ∆µ/µ∆ (or α/α, ∆β/β, and ∆ρ/ρ) may be obtained through a simple 
linear inversion.  These values may then be substituted in for the values originally set to 
zero, and thus by iteration we may easily obtain essentially the same results as with the 
full Zoeppritz equation.  An alternate use of these equations is discussed in the next 
section. 

 

EXAMPLE 
 

Ramos and Castagna (2001) recently put forward some expressions for use with 
converted wave AVO.  In particular they describe a new �high-contrast� approximation 
for RPS that they compare with a �low-contrast� approximation obtained from the Aki-
Richards approximation.  Both are of the form RPS = A sinθ+B sin3θ, analogous to 
Shuey�s two-term equation, which can be written as 
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Their low-contrast approximation has the benefit of being simple enough that 
information on rock properties can be readily extracted, once A and B have been fit to 
seismic data.  Unfortunately the results are not always accurate.  Their high contrast 
approximation is much more accurate, but there is no obvious way to extract properties 
from it. 

The equations we have derived above are generally of the same accuracy of the high-
contrast approximation of Ramos and Castagna.  To illustrate this, we plot RPS

P-L and 
RPS

P-L truncated at sin3θ along with the exact value (Figure 6).  As expected, the RPS
P-L 

approximation follows the exact value closely.  In addition, the cubic truncation is 
accurate up to at least 20°.  Comparison with Figure3b of Ramos and Castagna (2001) 
shows that the cubic truncation is of the same accuracy as their high-contrast 
approximation. 
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Figure 6:  RPS
P-L and RPS

P-L truncated at sin3θ compared with the exact value.  Compare to Figure 
3b of Ramos and Castagna (2001). 

In addition to its accuracy though, the pseudo-linear approximation is of a form such 
that rock properties can be extracted nearly as readily as with Ramos and Castagna�s low-
contrast approximation.  We have derived expressions for the two-term sinθ expansions 
of both RPP

P-L and RPS
P-L.  For again write Shuey�s equation, and then the pseudo-linear 

analogue for comparison: 
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We have again used arrows to emphasize the similarity of the two expressions.  Indeed, if 
all the contrasts in square brackets are set to zero (highlighted in yellow), then the 
pseudo-linear expression becomes equal to the Shuey equation.   

The converted-wave expression of course is more complicated, including as it does, 
higher-order terms.  We first give the expression derived from the Aki-Richards 
approximation, as given, for instance, by Ramos & Castagna (2001), and then the 
pseudo-linear analogue: 
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Once again, the linear structure of the pseudo-linear result is evident. 

Carcuz (2001) has suggested an AVO method given such two-term expressions for 
RPP and RPS. Given two slopes and two intercepts, obtained from both compressional and 
converted wave data, then one has four equations in four variables � the three relative 
contrasts and the ratio β/α.  Thus one could in principle solve even for the VP-VS ratio, 
which is normally required as input. Even with simple relations such as Equations (5) and 
(7), these are non-linear relations, but Carcuz indicates that one can readily obtain a 
unique and stable solution.  A solution of Equations (5) and (7) could logically be used as 
the initial guess for a solution of Equations (6) and (8), whose error should always be far 
less than that of the data itself. 

 

CONCLUSIONS 
 

Based on the observation that, for α2 > β1, RPP and RPS are much more sensitive to P-
wave velocity contrasts than to S-wave or density contrasts, we have developed new 
approximations for these two key Zoeppritz coefficients.  These approximations are 
optimal in the sense that they are nearly as accurate as the exact expressions for 
parameters typical of geological interfaces, but they are simple in the sense of having a 
linear structure, even though they are not truly linear.  This means that they may be 
employed in a fairly simple fashion to obtain quite accurate results, if the assumptions of 
the original Zoeppritz model are valid.  They will also serve as a useful reference in 
working to relax the basic assumptions of the fundamental Zoeppritz equations. 
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