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Linearized quantities in T.I. media  

P. F. Daley  

ABSTRACT 
When describing transversely isotropic (T.I.) media it has become common to use, 

apart from reference qP  and VqS  velocities, α and β , the two parameters, ε  and δ , to 
account for the deviation of the coupled qP  and VqS  modes of wave propagation from 
the isotropic case. The prefix " "q  denotes"quasi" , and is used to distinguish anisotropic 
from isotropic media as different inherent concepts, not explicitly obvious in the isotropic 
case, are required to be addressed when dealing with anisotropic media of any degree of 
complexity. The dimensionless quantity, ε , is a measure of the ellipticity of the qP  
wavefront and δ , the �strange� parameter, is employed as a measure of deviation of the 
qP  wavefront or slowness surface from the ellipsoidal and also of the VqS  wavefront or 
slowness surface from the spherical. As the parameter, δ , has been described in the 
literature as �conceptually inaccessible�, it would seem a logical progression to attempt 
to determine an alternative parameterization in physically realizable quantities. It is that 
topic which is dealt with in this note. The linearized qP  and VqS  phase (wavefront 
normal) velocities and the linearized PP and V VS S  reflection coefficients to first order 
accuracy at an interface between two T.I. media are examined in this regard. The solution 
proposed involves a simple reorganizing of terms in the linearized expressions for the 
two phase velocities and reflection coefficients resulting from the introduction of the 
parameter σ . This quantity is used in a modified form here compared with that used by 
other authors, usually when discussing VqS  wave propagation in a T.I. medium. 

The parameterization of this media type in ( ),ε σ  rather than ( ),ε δ  is transparent 
from a numerical perspective as little if any changes would be required in any related 
software. 

INTRODUCTION 
A number of authors have presented linearized approximations of differing forms to 

the reflection and transmission coefficients in elastic isotropic media (Bortfield, 1961; 
Chapman, 1976; Aki and Richards, 1980; Shuey, 1987). Extensions of these 
approximations to transversely isotropic (T.I.) media have appeared in several papers 
including, Banik (1987), where a discussion of the physical meaning of δ is given, 
Thomsen (1993), who presents linearized expressions for the PP  and V VS S  reflection 
coefficients and the significance of δ  within this approximation, and Blangy (1994) 
where linearized T.I. expressions for reflection coefficients are used in an AVO analysis. 
The formulae presented for the PP  and V VS S  reflection coefficients in a transversely 
isotropic case employ expressions involving the dimensionless quantities, ε  and δ , 
introduced into the seismic anisotropy literature by Thomsen (1986), and subsequently 
entering into common usage, to quantify, generally, the deviation of a T.I. medium from 
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the isotropic case. Using this notation a T.I. medium may be fully parameterized in terms 
of ε  and δ , together with the reference qP  and VqS  velocities, α and β , which will be 
formally defined later, and density, ρ . As the linearized qP  and VqS  phase velocities 
(Thomsen, 1986) are relevant to this topic they will be given preliminary consideration.  

The object of this note is to comment on a certain aspect of the linearized derivations 
and to introduce some minor adjustments in the equations presented by the authors using 
an analysis of the exact expressions for the qP and VqS  phase velocities. This adjustment 
consists of introducing the dimensionless variable ( )σ δ ε= − ∗. A similar quantity was 
isolated by Banik (1987), Thomsen (1993) and Tsvankin and Thomsen (1994) among 
other more recent works by these authors. It is usually defined in their papers as 

( ) ( )2σ α β ε δ= − ** and used most often by these authors in reference to the VqS  
propagation mode. In the recent paper of Grechka and Tsvankin (2002) the quantity 

( ) ( )1 2η ε δ δ= − +  is defined as the �anellipticity coefficient� which is used to describe 
the deviation of a T.I. medium from the ellipsoidal. The difference between a similar 
quantity used here and identified as σ  is that η  results from a linearized approximation.  

The exact and approximations for �mildly� anisotropic eikonal equations (Shoenberg 
and Helbig, 1996), which will be required here, may be found in the Appendix. As far as 
it is possible, the notation used by Thomsen (1986) and (1993) will be retained in the 
expressions for the linearized phase velocities and reflection coefficients. 

As previously stated the two anisotropic parameters, ε  and δ , and the velocities, α  
and β , together with density, ρ , defining a T.I. medium may be expressed in terms of 
the traditional anisotropic coefficients ij ijC Aρ= , ijA  having the dimensions of velocity 
squared. The relevant formulae relating the two types of media specifications will be 
presented and discussed before proceeding further. The first of these, ε , defines, for the 
compressional wavefront case, the difference between a spherical wavefront and an 
ellipsoid of revolution wavefront which is symmetric about the vertical. It is the measure 
of the ratio of the horizontal and vertical velocities of the ellipsoid of revolution, the first 
step in progressing from a spherical to a general T.I. wavefront type. (A VqS  wavefront 
at this stage would still be spherical.) The quantity ε  is defined as (Thomsen, 1986). 

 
11 33

332
A A

A
ε −
=

, (1) 

where 11 / 2A πα=  is the qP  wave velocity in the horizontal direction, i.e., parallel to an 
interface, assuming that the axes of anisotropy in the medium are aligned with the 
interface. In a similar manner 33A α=  is the velocity normal to the interface or the 
normal incidence velocity of the qP  wavefront. The shear wave velocity along the 

                                                 
*This definition of σ  is not related to that found in Shuey (1985). 
** In Banik�s (1987) notation, 4Sε σ= . 
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meridional axes in a T.I. media is defined as 44A β= . Utilizing these definitions, the 
following additional quantities have the form  

 ( ) ( )2
11 33 331 2 1 .A A Aε ε= + ≈ +  (2) 

The approximate relation is made under the assumption the that 1.0ε << , which results in 

 ( )2 1 .πα ε α≈ +  (3) 

As shown in the Appendix, if the quantity δ  is identically equal to ε  in a T.I. 
medium, the well-known condition of the medium degenerating to the ellipsoidal case 
occurs. The definition of δ  involves, among other anisotropic coefficients, the 
coefficient 13A , itself conceptually vague from a physical point of view, and is given by 
the relation 

 

( ) ( )
( )

2 2
13 55 33 55

2
33 33 55

.
2

A A A A
A A A

δ
+ − −

=
−  (4) 

Thomsen, in his 1993 paper, comments on δ  in the following manner: 

�The parameter δ  is intuitively inaccessible, and is tedious to measure in the 
laboratory, but Thomsen (1988) showed that δ  is much more important in most 
exploration contexts than is the more familiar anisotropy parameter ε .� 

It is to be taken from the above statement that the deviation of the T.I. wavefront from 
the ellipsoidal is more important in seismic applications than is the dependence on ε  and 
that in any approximation to a quantity involving these two parameters should reflect this. 
However, as a consequence of the phrase, �� The parameter δ  is intuitively inaccessible 
� �, the same of which may be said of the quantity 13A , it would seem that some other 
parameter which is more understandable from a physical point of view may be chosen to 
describe a medium of this type and it would be desirable in practice to have such a 
quantity which could be referred to in a fairly definitive manner as the deviation of the 
T.I. medium from the degenerate ellipsoidal case. 

The discussion presented here will be limited to a relatively small region of incident 
angles about normal incidence where a significant part of the actual seismic acquisition is 
done. As a consequence only terms up to first order in the linearized approximations will 
be considered, as this serves the purpose of the motivation for this work. A discussion of 
higher order terms and their usefulness may be found in Blangy (1994). 

LINEARIZED qP  AND VqS  PHASE VELOCITIES IN T.I. MEDIA  

As a point of reference, it might be instructive to first present the linearized expression 
for the qP  phase (wavefront normal) velocity in the ellipsoidal case of transverse 
isotropy. With θ  being the phase angle, the exact equation for this velocity is 
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 ( ) ( )1/ 22 2
11 33sin cos .qPv A Aθ θ θ= +  (5)  

Expanding equation (5) in a power series, retaining only the zero- and first-order terms 
and introducing andα ε  as defined in the previous section has  

 ( ) ( )21 sinqPv θ α ε θ≈ + , (6) 

which displays a first-order dependence on ε . 

The linearized phase velocity of the quasi-compressional, qP , velocity as derived by 
Thomsen (1986) is specified by the relation 

 ( ) ( )2 2 41 sin cos sinqPv θ α δ θ θ ε θ= + +  (7) 

and contains an implicit first order dependence on ε  in the ellipsoidal limit, δ ε→ . The 
above approximation was obtained by expanding the exact expression for the qP  phase 
velocity in a Taylor series expansion in ε  and *δ  with *δ  having a slightly different 
definition than δ , given by 

 ( ) ( )( )2*
13 55 33 55 11 33 552

33

1 2 2 .
2

A A A A A A A
A

δ  = + − − + −   (8) 

Adding and subtracting the quantity 2" sin "ε θ  from (7) and using the variable 
quantifying the variation of the T.I. wavefront from the ellipsoidal case discussed in the 
Appendix, ( )σ δ ε= − , results in 

 ( ) ( )( )2 41 sin sin .qPv θ α σ ε θ σ θ= + + −  (9) 

As the first-order approximation will be used in the reflection coefficients in the next 
section the first-order approximation of equation (9) is  

 ( ) ( )( )21 sinqPv θ α σ ε θ= + + . (10) 

This equation is consistent with the ellipsoidal case, having a first-order dependence 
on ε  and in agreement with the fact that the qP  wavefront is dependent on a two-
parameter specification, ε  and σ . 

The VqS  linearized phase velocity derived by Thomsen (1986) is defined as 

 ( ) ( ) ( )( )2 2 21 sin cos
VqSv θ β α β ε δ θ θ= + − . (11) 

In terms of the introduced parameter, σ , the above equation becomes 
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 ( ) ( ) ( )( )2 22 41 sin sin
VqSv θ β α β σ θ α β σ θ= − + , (12) 

where clearly both the first and second order terms in the linearized approximation are 
dependent only on σ , the deviation from the ellipsoidal. The lack of an explicit 
dependence on ε  is what would be expected as the velocities along the meridional axes 
of the VqS  wavefront are 55Aβ = . The altered expression for equation (12), accurate to 
order one is  

 ( ) ( )( )2 21 sin
VqSv θ β α β σ θ= − . (13) 

The phase velocities of first-order accuracy have been given here as the linearized 
reflection coefficients used in the next section are of order one accuracy and it is 
cautiously predict at this point that the first order linearized reflection coefficients 
considered will display the same type of dependence on the parameters ε  and σ  as do 
the phase velocities. 

LINEARIZED PP AND V VS S  REFLECTION COEFFICIENTS IN T.I. MEDIA 

To further illustrate the possible usefulness of the ( )( ), ,ε σ ε δ  parameterization over 

that in ( ),ε δ , the linearized PP  and V VS S  reflection coefficients at an interface between 
two T.I. media (upper = 1 and lower = 2) given in Thomsen (1993) will be considered. 
Some definitions of the quantities involved and constraints on them should first be 
addressed. Variables prefixed with " "∆  indicate the difference of the quantity between 
media, i.e., ( ) ( )2 1ξ ξ ξ∆ = − , while those with an overscore refer to the mean of the 

quantity, ( ) ( )( )2 1 2ξ ξ ξ= + . Further, weak anisotropy is assumed so that (Thomsen, 
1993) 

 1, , , .ξ ξ α β ρ
ξ
∆

<< =  (14) 

ρ  being density and 

 ( ) ( ) ( ) ( ) ( )1, , , , 1, 2.i i i i i iξ ξ ε δ σ<< = =  (15) 

The linearized, accurate to order one, PP  reflection coefficient between two T.I. media, 
in Thomsen�s 1993 work (Equation (10)) is introduced as 

 ( ) ( ) ( )( )
2

2
2 1

1 1 2 sin
2 2P

ZR
Z

α βθ δ δ θ
α α

  ∆ ∆ = + − + −        
, (16) 

where Z ρα=  is the average compressional velocity impedance and 2G ρβ=  the shear 
modulus impedance. Rewriting (16) in terms of ( ),ε σ , which in a manner similar to the 
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phase velocity involves adding and subtracting the two terms ( )
2

2" sin 2"ε θ  and 

( )
2

1" sin 2"ε θ , results in  

 ( )
2

21 1 2 sin
2 2P

ZR
Z

α βθ σ ε θ
α α

  ∆ ∆ = + − + ∆ + ∆        
. (17) 

Equations (16) and (17) are identical with the exception that in equation (16), ( ),ε δ  

are used as the anisotropic indicators while in (17), ( ),ε σ  have been introduced. As in 
the case of the phase velocity discussed in the previous section, the first order term in the 
linearized expansion of the PR  reflection coefficient should contain both the quantity 
controlling the deviation of the ellipsoidal case from a T.I. media, σ , and the ellipticity 
factor, ε . This is not immediately obvious from equation (16). The anisotropic 
parameters used in equation (17) both have physical meaning, are physically realizable 
and, given a reasonable acquisition geometry, both ε  and σ  may be at least grossly 
estimated from traveltime measurements (Gassmann, 1964). 

The linearized V VS S  reflection coefficients at the interface of two T.I. media 
approximated to first order is given by Thomsen (1993), with a similar result to be found 
in Banik (1987), as  

 

( )

( ) ( ) ( ) ( )( )

2 2

2
2

2 1 2 1

1 1 tan 2 2 sin
2 2

sin

VSR ρ β β ρ βθ θ θ
ρ β β ρ β

α δ δ ε ε θ
β

   ∆ ∆ ∆ ∆ ∆
= − + − + +   

   
  

− − − −  
   

. (18) 

Introducing σ  through the definition of σ∆  results in equation (16) becoming 

  

( ) 2 2

2
2

1 1 tan 2 2 sin
2 2

sin

VSR ρ β β ρ βθ θ θ
ρ β β ρ β

α σ θ
β

   ∆ ∆ ∆ ∆ ∆
= − + − + +   

   
  

− ∆  
   

. (19) 

As in the PR  case, the dependence of 
VSR  on ε  and σ  is related to the VqS phase 

velocity of order one accuracy dependence on these quantities. The dependence of 
VSR  

on the single parameter describing deviation from the ellipsoidal case is indicated, as the 
linearized VqS  phase velocity is a function of just this anisotropic quantity. It should be 
noted that equations (16), (17), (18), and (19) display only first order accuracy to terms in 

2sin θ . The comparison of linearized phase velocity dependencies on ε  and σ  to other 
linearized reflection and transmission coefficients with the same dependencies shows a 
fairly consistent, if not predictable, pattern. 
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CONCLUSIONS 
A slightly different manner of specifying anisotropy in transversely isotropic media, 

within the framework of the widely used ( ),ε δ  notation, has been presented without 
altering the outcome of the linearized equations for qP  and VqS  phase velocities and the 
PP  and V VS S  reflection coefficients at an interface between two T.I. media. A 
previously defined parameter has been introduced in a slightly altered form to act as the 
indicator of the deviation of a T.I. medium from the ellipsoidal. This parameter, 

( )σ δ ε= −  is used to replace δ  in this capacity, as σ  is a physically realizable and 
measurable quantity, where δ  has been described as �intuitively inaccessible�, or its 
physical significance analyzed in terms of formulae based on weak anisotropic linearized 
approximations (Banik (1987). In fact, as seen in the above relation involving ε , δ  and 
σ , it may be conjectured that physical meaning can only be assigned to δ  when it is 
measured relative to another parameter with an identifiable physical meaning, which in 
this instance is ε . 

Finally, as proposed by many authors, linearized approximations should be used 
almost exclusively in efforts to obtain an understanding of the physics of the problem at 
hand. For all other applications, with specific exceptions, exact formulae are highly 
encouraged to minimize the possibility of errors in numerical accuracy and loss of 
concepts inherent in the �exact� theory. 
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APPENDIX: PHASE (WAVEFRONT NORMAL) VELOCITIES IN T.I. MEDIA 

The exact expressions for the qP  and VqS  phase (wavefront normal) velocities, with 
the prefix " "q  denoting "quasi"  as the rays and wavefront normals in this medium type 
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display subtly different qualities than the P  and VS  propagation modes in an isotropic 
medium, may be written in the modified forms (Gassmann, 1964) as  

 ( ) ( ) ( ) ( )
1/ 2

1/ 22 2
11 33sin cos 1 4 1

2
qP

N D
AV A A αθ θ θ κ= +

  + + −   
, (A.1) 

 
( ) ( ) ( )

1/ 2
1/ 2

55 1 4 1
2

VqS
N D

AV A αθ κ= −
  + −    . (A.2) 

The quantities requiring definition in the above are 

 
( ) ( )2 2

11 55 33 55

2 2
11 33 55

sin cos

sin cos

A A A A A

A A A
α θ θ

θ θ

= − + −

= + −
, (A.3) 

 
2 2

2

sin cosD
D

A
Aα

θ θκ = . (A.4) 

Approximating the radical in Dκ  in (A.1) and (A.2) by retaining only the first two terms 
in the binomial expansion has the effect of smoothing the slowness surfaces (eikonals) 
and consequently the phase velocities. The results termed �mild� anisotropy (Shoenberg 
and Helbig, 1996) may be written as 

 ( ) ( ) ( )
1/ 22 2

2 2
11 33 2

sin cossin cosqP D
N

AV A A
Aα

θ
θ θθ θ=

 
+ + 

 
, (A.5) 

 ( ) ( )
1/ 22 2

55 2

sin cosVqS D
N

AV A
Aα

θ
θ θ

=
 

− 
 

, (A.6) 

 ( ) ( )( )2
13 55 11 55 33 55DA A A A A A A= + − − − , (A.7) 

or in terms of Thomsen�s ( ),ε δ  notation 

 ( )( ) ( )( )2 2 2
33 33 55 02 2DA A A A δ ε α α β δ ε= − − = − − . (A.8) 

As may be apparent from viewing the phase velocity equations given in (A.5) and 
(A.6), when 0DA ≡ , or equivalently, δ ε= , the transversely isotropic medium being 
considered degenerates to the ellipsoidal case, indicating than DA  may be considered a 
measure of deviation of a transversely isotropic medium from the ellipsoidal case. It 
seems not an unwise move then to parameterize the anisotropy within a transversely 
isotropic medium in terms of ε  - the deviation of the ellipsoidal from the spherical and 

DA  - the deviation of the transversely isotropic medium from the ellipsoidal case. As ε  
is a dimensionless quantity and DA  has the dimensions of velocity to the fourth power, a 
dimensionless equivalent of this is sought. It should be further noted that this deviation 
term is the same for both qP  and VqS  phase velocity expressions, differing only in sign 



Linearization 

 CREWES Research Report � Volume 14 (2002) 9 

and that σ  may be positive, negative or zero. Although the definition of the quantity σ  
was obtained from an approximation to the eikonal equations its use in the exact eikonals 
is valid. 

As mentioned in the text, the term, σ , is discussed in Banik (1987), Thomsen (1993) 
and Tsvankin and Thomsen (1994) and defined in those papers to be ( ) ( )2σ α β ε δ= − , 
to indicate a quantity dealing only with the measure of VqS  anisotropy in a medium and 

( ) ( )1 2η ε δ δ= − +  the �anellipticity coefficient� that is used as a measure of deviation 
of a generally transversely isotropic medium from the ellipsoidal case. In this report, σ  
will be defined as 

 ( ).σ δ ε= −  (A.9) 

The motivation for this parameter change is that σ , at least in theory, is a measurable 
quantity with a physical significance.  


