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Improved Radon transforms for filtering of coherent noise 

Shauna K. Oppert and R. James Brown 

ABSTRACT 
Radon transforms rely on the ability to predict the moveout of coherent events. Most 

algorithms assume parabolic or hyperbolic moveout, a characteristic that many 
reflections do not adhere to. Standard parabolic and hyperbolic Radon transforms 
typically involve smearing of reflections across Radon space, which reduces the 
effectiveness of coherent-noise suppression. We present a method developed to 
specifically remove reflections having nonhyperbolic moveout. The shifted-hyperbolic 
and anisotropic Radon transforms employ a curve-fitting technique to allow for 
flexibility in predicting the true moveout of specific reflections. In addition, 
approximations to the damping factors used in the low- and high-resolution Radon 
algorithms are presented. These alternate parameters are feasibly employed and improve 
the efficiency of the algorithms. 

INTRODUCTION 
The Radon transform is a processing tool utilized to exploit differences in the moveout 

of seismic events. Variants of the algorithm are commonly employed in discriminating 
between primary reflections and other types of coherent noise. The linear function 
typically is used in the suppression of ground roll and other linear noise events (Trad et 
al., 2002; Kelamis et al., 1990). Parabolic and hyperbolic Radon-domain processes are 
commonly geared towards noise attenuation or data interpolation. The time-invariant 
hyperbolic transform is used in suppressing multiples, but is accurate only at depths 
approximately corresponding to offset (Foster and Mosher, 1992). 

Although the Radon space is frequently utilized for multiple suppression, much work 
has been completed involving the transform for other innovative applications. Radon 
transforms are commonly employed in attenuating sampling artifacts, gap-filling of 
missing data, and various migration and inversion techniques (Trad et al., 2002; Ottolini 
and Claerbout, 1984; Miller et al., 1987; Rüter, 1987; Hubral, 1991; Diebold and Stoffa, 
1981; Thorson and Claerbout, 1985). Additionally, Radon algorithms are also effective 
for plane-wave decomposition, wavefield separation, and filtering (Zhou and Greenhalgh, 
1994). 

The Radon transform is advantageous because it requires no inherent knowledge of 
the coherent-noise-generating mechanism and works relatively well with nonuniform 
geometries (though it may require extensive computing time). Although the Radon 
transform is practical for implementation in a wide variety of cases, there are limitations 
on the effectiveness of Radon methods due to the inherent assumptions made. 

The most popular multiple-removal technique involves Hampson's (1986) method of 
applying NMO to CMP gathers and isolating events in the data that have residual 
moveout. This method is relatively inexpensive to implement and works well in laterally 
homogeneous media. However, the algorithm breaks down in cases of strong lateral 
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velocity variations when NMO assumptions are not met. Nonhyperbolic moveout, such 
as that found for converted waves, anisotropic media, or long-offset data, also will not be 
completely suppressed with this method. 

Thorson and Claerbout (1985) described some implicit assumptions made in using the 
Radon transform on regular data. A reflector on a CMP gather should have uniform 
amplitude and vary smoothly in moveout from trace to trace for the Radon transform to 
be able to effectively focus the event. Specifically, the traces on the gather must be free 
of static shifts and be balanced in amplitude. 

In order to avoid problems due to violation of these assumptions, the data should be 
preconditioned prior to Radon analysis to remove dip and static problems (Thorson and 
Claerbout, 1985). However, it seems counterproductive to remove AVO effects for 
improving multiple suppression when the identification of hydrocarbon reservoirs 
through AVO is dependent upon the preservation of true amplitudes. Better focusing of 
reflections in the Radon panel can lead to better handling of nonuniform reflection 
amplitudes, thereby diminishing some of the problems associated with smearing of 
amplitude with offset. 

The high-resolution Radon technique proposed by Sacchi and Ulrych (1995) 
minimizes smearing problems in the Radon panel due to limited-aperture problems; 
however, it is rather expensive to implement and the vertical smearing of events on the   
τ-p gather is not removed. It follows that a Fourier-domain method for performing fast 
inversions with sparse constraints in both the τ- and p-directions may well be the next 
key endeavor for efforts in this area. Alternative methods for improving τ-p focusing, 
such as employing alternate summation paths and damping factors, will prove important 
for effective removal of noise until a fast transform that is computationally sparse is 
established. 

The first part of this paper catalogues equations for improved approximations of 
reflection moveout, reducing the error and smear involved in the transform space. The 
second part of this paper introduces an alternative damping factor that may be used in the 
low-resolution transform. Approximations for the high-resolution damping-factor 
parameters are also presented to allow for reduced cost and ease in applying this 
computer-intensive technique. The implementation of these enhanced equations attacks 
the limitations of existing Radon transforms in order to attain a better coherent-noise 
suppression technique. 

METHODS 
The simplified formula for two-dimensional generalized Radon transforms is given as: 

 ( ) ( ) ( )[ ] hthptthtdpm dd,,',, ∫∫ −= τδτ  (1) 

where the function d denotes the CMP input signal in t-h or data space and m denotes the 
output function in model space. Thorson and Claerbout (1985) also refer to the domains 
of d and m as offset and velocity space, respectively. The Dirac delta function (δ) in 
equation (1) identifies rectilinear paths that are parallel to a specified set of projections, 
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given by 't . The function 't  is defined for the particular type of τ-p transform. Slant 
stacks involve summation along lines where pht += τ' , where the transform is given as: 

 ( ) ( ) ( ) .dd,, htphthtdpm ∫∫ −−= τδτ  (2) 

Parabolic transforms involve summation along curves such that 2' qht += τ , and 

poststack migrations involve summation along ( )[ ] 2/1222 /4' vhqt −+= τ  curves (Cary, 
1998). In these two equations, the curvature variable, q, replaces p, representing the 
moveout for the parabolic and other specified transforms. The parabolic transform is 
given as: 

 ( ) ( ) ( ) .dd,, 2 htqhthtdqm ∫∫ −−= τδτ  (3) 

The parameter τ is zero-offset time for a particular summation curve. 

Hyperbolic summation paths can be integrated directly in an expensive time-variant 
manner where 2 2 2 1/ 2' ( )t q hτ= + . Specialized summation curves may also be developed 
for efficient targeting of particular reflections. Foster and Mosher (1992) proposed a 
summation curve that optimized the focusing of hyperbolic multiple reflections around a 
specific focusing depth; ( )zzhqt k −++= 22' τ  is their summation path, and z is the 
chosen fixed focusing depth for the multiple reflection. Their hyperbolic multiple 
transform is written as: 

 ( ) ( ) ( )[ ] .dd,, 22 htzzhqthtdqm k∫∫ −+−−= τδτ  (4) 

Traditional Radon transforms assume that events maintain a parabolic or hyperbolic 
shape. This imperfection of the Radon transform makes the process ill-suited for event 
isolation. The inaccurate approximation of the shapes of reflections leads to smearing and 
defocusing of the events in the Radon panel. The smearing of multiples into primary 
events in the Radon panel can counteract coherent-noise muting techniques. 

The compelling question is how do we obtain less smearing and higher resolution in 
the Radon panel? Disregarding the aperture and discrete sampling problems, a better 
approximation of the shape of the reflections would, in theory, decrease the smearing and 
limit the overlap of events in the Radon panel. Castle (1994) showed that the Dix (1955) 
NMO curve is a small-offset approximation for moveout of reflections for a horizontally 
layered Earth. He recommended using the shifted-hyperbola equation as a solution to the 
inaccuracies of reflection moveout at long offsets. Castle gave the sixth-order shifted-
hyperbola equation as: 

 2 2 4 6
1 2 3 4 ,t c c h c h c h= + + +  (5) 

where the coefficients are defined as: 

 2
1 0 ,c t=  (6) 
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The parameter 0t is the two-way vertical traveltime from source to receiver; kτ∆  is the 
vertical traveltime in the kth layer, and kV  is the interval velocity of the kth layer.  

In a more simplified approach, we propose the fourth-order nonhyperbolic Radon 
transform that employs the first three terms of equation (5) for the summation of 
reflections for long-offset data. The focusing parameters, 0t  and 4µ , are extrapolated 
from the data as input parameters in each transform for a particular primary, multiple, or 
converted-wave reflection. The fourth-order summation curve is represented as 

( )khqft += τ'  and the elements of the function ( )kf h  are given as: 

 
( )2 4

42
2
0

1
( ) .

4k

q qh
f h h

t
µ−

= +  (11) 

The fourth-order equation operates on the data in the t2-h domain, a process that 
considerably increases the size of the data to be transformed and the computation time. 
An alternative shifted-hyperbola equation in the t-h domain is also given by Castle 
(1994), where: 
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The summation curve used in the linear operator requires input tuning parameters, z 
and S, for the function 

 
2 2

2

4 2( ) .k
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= + −  (13) 

Foster and Mosher�s (1992) hyperbolic summation curve can be represented as an 
approximation of the shifted hyperbola in equation (13) (Oppert, 2002). The shifted-
hyperbolic Radon transform can be implemented through direct data estimation of the 
focusing parameters, t0 and µ4, for equation (11). Alternatively, curve-fitting techniques 
such as that described by Elapavuluri and Bancroft (2002) can be employed to estimate 
the shift parameter as a function of velocity for implementation in equation (12). 
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Anisotropic Radon: 
Reflections involving anisotropic media typically have a nonhyperbolic shape, 

requiring unconventional equations to describe their moveout. Reflection traveltimes for 
the case of transverse isotropy with a vertical symmetry axis (VTI) can be summarized 
using the equation derived by Alkhalifah and Tsvankin (1995), that is: 

 ( )2 4
02 2

0 2
0 0

/
1 2

1 (1 2 )( / )
PNMO

PNMO PNMO

x t Vxt t
t V x t V

η
η

  
 ≅ + −  + +   

 (14) 

where the anisotropic parameter η  is defined as: 

 ( )
( )δ

δεη
21+

−=  (15) 

and the parameters ε  and δ  are dimensionless measures of anisotropy defined by 
Thomsen (1986). The Radon transform for anisotropic reflections in equation (14) 
requires input tuning parameters ε , δ  and 0t  defined to focus specific reflections. The 
anisotropic linear operator function is defined using: 

 
2

2
2 2
0
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η
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The parameters involved in the anisotropic Radon transform should be estimated from 
the data. Accurate knowledge of the anisotropic parameters leads to improved focusing 
for reflections in the anisotropic model space. 

The least-squares approximation 
The time-domain transform given in equation (1) is sufficient for use with continuous 

and infinite data. In practice, however, field data are finite and discretely sampled 
functions. Thorson and Claerbout (1985) used the idea of minimum entropy to formulate 
an expression to calculate the model space, m, for a finite number of q and τ. This 
formulation later was called the discrete Radon transform (DRT). The proposed least-
squares formulation of the DRT employs sparsity constraints along the q and τ axes to 
reduce amplitude smearing in the t-h domain. The computer-intensive time-domain DRT 
can be written as: 

 ( ) ∫=
max

min

.d)',(,
h

h

hthdqm τ  (17) 

In order to examine the problem in a least-squares sense, it is easier to express (17) as 
a summation, where 

 ( ) { }.,...,1;,...,1,)',(,
1 1
∑∑

= =
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M

j

N

k
jk NkMjthdqm τ  (18) 

The summation can be written in matrix form as: 
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 ,dLm' T=  (19) 

where LT is an N×M linear operator defined by the transformation curves of 't . This 
formulation of the problem involves applying the linear operator, LT, to the data to obtain 
a low-resolution version of the transformed function in model space, denoted by m'. The 
linear operator, LT, applies a moveout stretch to the data, where the moveout is 
dependent on the type of τ-p (or τ-q) transform being calculated. The transpose of LT, L, 
is also an adjoint of LT, provided the elements of LT are real numbers. The associated 
inverse transform of equation (19) is given as:  

 Lmd =  (20) 

(Thorson and Claerbout, 1985). 

Equation (20) provides the inverse transform back to data space by application of the 
linear operator directly to the Radon panel. The adjoint, L, applies an inverse-moveout 
compression on each trace to obtain the data space (Thorson and Claerbout, 1985). 
Because L is an inexact inverse of LT, a least-squares (or stochastic) approach to the 
inversion can provide higher resolution in the forward transform domain (Kabir and 
Verschuur, 1994).  

The stochastic inversion approach derived by Thorson and Claerbout (1985) asserts 
that the transformation of the linear operator L on some function 0m  results in the 
combination of the CMP gather and a noise term, n , such that 

 .nLmd 0 +=  (21) 

The solution to equation (21) is obtained by taking a least-squares approach to 
minimizing the noise term, n, which represents the difference between the actual data and 
the modelled data. The cumulative squared noise term, ( ) ( ),0

T
0

T LmdLmdnnS −−==  
is minimized with respect to 0m , to yield the desired least-squares solution: 

 [ ] dLLLm T1T −=  (22) 

(Lines and Treitel, 1984). The generalized inverse of L is thus computed to be 
[ ] .T1T LLL −  

The calculation of the inverse of LLT  is required to solve equation (22) directly, a 
process that typically is impractical due to the large nature of the matrix and the 
instability of the inversion. Furthermore, the operator LLT  is diagonally dominant; 
however, if the side lobes of the matrix are significant, then smearing occurs along the   
q-axis. Prewhitening the operator LLT  suppresses the side lobes and stabilizes the 
inversion. 

A stable solution for equation (19) is computed by perturbing the matrix LLT  with a 
damping factor. The resultant stochastic inversion formula is given as: 
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 [ ] ,dLILLm T1T −+= µ  (23) 

where the constant µ  is the damping factor incorporated to add white noise along the 
main diagonal of the inversion matrix, and I  is the identity matrix (Thorson and 
Claerbout, 1985).  

The offset-weighted damping factor 
If the variances for the solution m  are undetermined, the sparsity constraint, µ , can 

either be bootstrapped from the data or iteratively refined. In practice, µ  is defined as 

1% of Λ, the maximum of the main diagonal of the matrix ( )TTLL  (Yilmaz, 1989). An 
offset-weighted damping factor, Γ , may be alternatively used in place of µI , such that 

 ,=Γ γI  (24) 

and γ is the vector with elements max /(1 )kh h+ . 

The alternative damping factor was designed to represent the error of the least-squares 
algorithm as a function of offset. This methodology assumes the summation curves 
represent near-offset data better than far-offset data and compounds errors based on 
offset. The offset weighting typically acts to reduce smear in the low-resolution Radon 
panel, an effect that makes it preferable to the standard damping factor. A longer 
computing time may be required when using the offset-weighted matrix due to the 
nonconstant diagonal in the regularization matrix. 

The task of performing time-domain Radon transformations on field data is computer-
intensive and very costly due to calculations involving very large matrices. Hampson 
(1986) overcame this problem by performing integration for independent frequencies in 
the Fourier domain. This methodology relies on the similarity of the integration over 
curved lines in the time domain to the integration over phase shifts in the Fourier domain. 
A forward Fourier transform is applied to the data and the transform equivalent to 
formula (17) for a given summation curve, ( )'t qf hτ= + , is written as: 

 ( ) ( ) .d,,
max

min

)(∫
∧∧

=
h

h

hqfi hehdqm ωωω  (25) 

where 
∧
m  and 

∧
d  represent the Fourier-transformed model and data sets, respectively. The 

function f(h) is dependent upon the type of transform being computed and is usually 
given as x or x2. Equation (25) expressed in summation form is 

 ( ) ( ) { }.,...,1;,...,1,,,
1

)(∑
=

∧∧
===

N

k

hfqi
kj NkMjehdqm kjωωω  (26) 

The summation can be written in an equivalent matrix form as: 
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 ,
∧∧∧

= dL'm
A

 (27) 

where 'm
∧

 is a low-resolution version of the transformed function in Fourier-domain 
model space. Equation (27) is the Fourier-domain representation of equation (19). The 

elements for the Fourier-domain linear operator, 
∧
L , are now defined as: 

 ( ).,
kj hfqi

jk eL ω−∧
=  (28) 

The adjoint of 
∧
L  involves complex numbers and is denoted as 

A

L
∧

. The constrained 
least-squares formulation of the inversion in the Fourier domain is given as: 

 ( ) ( )[ ].kj xfq ωµ
∧∧

−
∧∧∧












+= dLILLm

A1A

 (29) 

The focusing power of the regularization parameter, µ, provides an inexact 
approximation of events outside of the finite aperture range of the data, subsequently 
smearing energy along the q-axis. A variable regularization term is required to constrain 
smearing of the transform in a data-dependent manner. Sacchi and Ulrych (1995) 
proposed a high-resolution technique that involves an iterative method of employing the 
data within the sparsity constraint to allow for a better reconstruction.  

The high-resolution method requires an initial computation of the model, mi, using 
equation (29): 

 .
∧∧

−
∧∧∧












+= dLILLm

A1A

i µ  (30) 

The approximations for the high-resolution damping-factor parameters 
After computation of the initial model, the resultant matrix is then used to determine 

the regularization parameter in an iterative method designed to minimize the smearing 
problems along the q-axis. The nonconstant diagonal regularization matrix, D, replaces 
µI in equation (30), and is defined for each iteration as: 

 .
2

i

i

m
D

∧
+

=
b

λ  (31) 

The constant regularization parameters, λ and b, are optimized for a CMP gather prior to 
application to the entire data set. The parameter b is included in the damping factor to 
provide for white noise. The parameter b may be alternatively estimated as 1% of the 

maximum of 
2

im
∧

, while the parameter µ may be substituted for λ. This alternative 
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estimation of the regularization parameters saves time in otherwise testing parameters to 
optimize the solution.  

The elements of the matrix D are computed during each iteration of the high-
resolution transform, where 

 { }.,....,1,0,1 K=











+=

∧∧
−

∧∧
+

∧
idLDLLm

A1

i

A

i  (32) 

Three iterations typically are necessary to provide an optimally constrained solution.  

CONCLUSIONS 
The shifted-hyperbola method acts to create a curve-fitting technique to approximate 

the actual moveout of targeted noise for improved suppression. Proper employment of the 
shifted-hyperbolic transform should result in well focused transform domains, less 
overlap of primary P-events and multiples in Radon space, and an overall improvement 
in multiple suppression in comparison with the parabolic and hyperbolic techniques. 

The shifted hyperbola creates a more accurately focused transform space when applied 
with correct parameters. The input shift parameter may be extrapolated from the data or, 
in cases where coherent events only slightly deviate from hyperbolae, they may be 
visually estimated. The flexibility of choosing the shift parameter allows the operator to 
design a focused transform for nonhyperbolic events. 

In summary, this work highlights several new insights dealing with Radon transforms. 
The offset-weighted damping factor [equation (24)] provides an alternative, empirical 
method for computing the least-squares damping factor. The approximations for the high-
resolution damping-factor parameters [equation (31)] expedite the process of choosing 
adequate parameters for various data sets. Ultimately, the alternative shifted-hyperbolic 
and anisotropic Radon equations [equations (11), (13), and (16)] should provide an 
enhanced algorithm for better focusing in Radon space. These methods should prove 
beneficial in the separation of coherent noise from reflections with variable amplitudes 
and phases. 
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