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Short note: Normal incidence synthetics in viscoelastic media 

P.F. Daley 

ABSTRACT 
One of the major tasks when introducing viscoelasticity (anelasticity) into synthetic 

seismogram computations requires selecting a method for accomplishing this and at the 
same time not introducing non-physical (causality) artefacts into the synthetics. This must 
be done within a mathematical framework, which can pass at least moderate scrutiny, 
without invoking questions as to, among other things, its accuracy, applicability and 
theoretical correctness. If the SEG reprint series (1981), which contains a number of 
reprints on viscoelastic theory applied to seismic problems, is consulted several (often 
contentious) points of view may be encountered. After a significant amount of numerical 
testing and consultation with other texts and papers related to this matter and with several 
academic and industry researchers, the theory presented by Futterman (1962) was 
deemed to be the most useful and accurate when used together with the high frequency 
geometrical optics solution method of computing synthetic traces. An assumption used in 
his discussion of seismic wave propagation in a viscoelastic medium is that 30Q > . 
(More realistically, the minimum value of Q should be such that 110Q > .) 

Although the problem considered here is fairly simplistic, an earlier version of this 
algorithm is part of a software package, which as of the date of writing, is still in use in 
an industry processing package. 

BASIC THEORY 
The equations of particle motion for a viscoelastic medium derived by Boltzman are 

the basis for the theory on which the software used here has been written. The theoretical 
development of this problem will not be pursued here as this is meant to be only a basic 
introduction to the topic that is probably better served by presenting some results rather 
than a sequence of fairly mathematically intense derivations. To further keep matters as 
simple as possible only normal incidence will be considered so that the saddle point at all 
frequencies, which are required to cover the spectrum of the source pulse in the 
frequency domain, is zero. In the more general non-zero offset case, the saddle point 
must be computed at each required frequency point for each ray comprising the synthetic 
trace and is a generally complex quantity, not laying on the real axis in the p  (slowness) 
plane, but rather in the first or third quadrant depending on the time dependence ( i te ω± ) 
used. 

The viscoelastic equivalents of the elastic coefficients are assumed to be time 
dependent and as a consequence, due to the complexity of even a simple problem type, a 
time transformation to the frequency domain is made and most computations are carried 
out in that domain. This allows for significant latitude in specifying the physical 
mechanisms that result in a medium being viscoelastic. The attenuating mechanism 
discussed in Futterman (1962) assumes that at some reference circular frequency, 

2R Rfω π=  a reference attenuation factor, ( )R RQ Q ω= , and reference P – wave velocity, 
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( )RV ω , are known. These quantities are real valued. At some other frequency, ω , the 

values of ( )Q ω  and ( )V ω  are given by the approximations to those of Futterman’s as 
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The two values ( )Q ω  and ( )V ω  obtained above are also real. Viscoelasticity or 
attenuation is introduced into a medium through a complex velocity obtained by an 
analysis of the attenuating mechanism, which as previously stated may be found in 
Futterman’s (1962) paper. His high frequency expression for this complex velocity in 
terms of the real parameters ( )Q ω  and ( )V ω  is 
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It should be noted that density is taken to be a real quantity throughout. 

The velocity defined by equation (3) is that which is used in the computation of the 
complex “traveltimes”, geometrical spreading and reflection and transmission 
coefficients. 

In the case of normal incidence for plane parallel layers the complex traveltime of a 
primary P ray propagating through N layers from a source and receiver located at the 
surface is given by  
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where Reτ  and Imτ  are real and positive and the " "±  choice is indicated by the time 

dependence used, i te ω∓ , as it is required that the solution be proportional to Ime τ−  
satisfying physical radiation conditions. 

If reflection and transmission coefficients are initially taken as modifications of those 
for a solid/solid interface as in Aki and Richards (1980), they degenerate to the normal 
incidence acoustic case (Brekhovskikh, 1980) for the problem considered here where at 
the j-th interface are functions of the complex velocity impedances, ( ) ( )n n nI Cω ρ ω=  

( ), 1n j j= + . The geometrical spreading is similar to the elastic case with the exception 
that complex quantities are used rather than the real values which result in the elastic 
case. 
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NUMERICAL RESULTS 
The model chosen for computing synthetic traces is composed of 8 layers over a 

halfspace. Actually, it is a four layered model which is repeated twice. This is a common 
practice in testing certain software packages to ascertain the accuracy of the results 
computed as there should be an observable relationship between the first and second 
occurrences of a layer with the same viscoelastic parameters. Only one layer in each of 
the two sequences is viscoelastic. This has the effect of the viscoelasticity of the single 
layer having its greatest affects on the reflection coefficient from its top interface and the 
interface between the viscoelastic layer and the underlying layer. However, all arrivals 
from deeper layers are affected in some manner. 

The normal incidence trace is computed for reference values of ( )RQ ω  of 1000, 100, 

50, 30 and 10. The value of ( ) 1000RQ ω =  is a progression towards a nearly elastic layer. 

The value of ( ) 10RQ ω = , which falls below the upper bound of 30 for which the theory 

is assumed valid, has been included to show that progressively smaller values of ( )RQ ω  
behave in a predictable manner even if the theoretical limit of applicability has been 
passed. The use of 30Q =  as a lower bound of applicability may also be questioned. The 
fact that the high frequency approximation appears to produce reasonable results outside 
of its region of applicability is not an uncommon occurrence. 

The reference frequency is chosen to be the same as the predominant frequency of the 
source wavelet; in this case, 30 Hz. A Gabor wavelet is used and defined as 
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where 2R Rfω π=  with 30Rf Hz=  and the dimensionless damping factor controlling the 
side lobes chosen to be 4.0γ = . The half length in the time domain of this pulse, ht , is 
approximately given by ( )2h Rt fγ≈ . The time dependence of the wavelet and the 
frequency spectrum are shown in Figure 1 while the velocity, density – depth structure is 
given in Figure 2. 

The normal incidence synthetic traces for the 5 different values of Q are presented in 
Figures 3 and 4. As no amplitude scaling of any kind is used, Figure 4 is just Figure 3 
with the first arrival removed to allow for better viewing. In Figure 4 the grid lines 
perpendicular to the time axis have been added to emphasize that no time shift in the 
arrivals occur at different values of Q. Only P-wave primaries are included in the traces. 
There are provisions for the introduction of multiples, which has not been implemented 
for this preliminary presentation. As 1000Q =  corresponds to the layer approaching the 
elastic case, conclusions as to the effect of introducing viscoelasticity are left to the 
reader’s observations of variations between the traces with different values of ( )Q ω  
shown in Figures 3 and 4. 
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FIG. 1 The time and frequency dependence of the Gabor wavelet with a predominant frequency 
of 30 Hz and a damping factor of 4. 
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FIG. 2. Velocity and density versus depth profiles for the model considered in this report. The 
velocities are reference velocities supposedly measured at some reference frequency. In actuality 
they reflect the velocities that would be measured if the media were elastic. The two anelastic 
layers are indicated on the velocity depth plot. 



Daley 

6 CREWES Research Report — Volume 15 (2003)  

 

FIG. 3. Normal incidence plots of traces using the model given in Figure 2. Five different 
reference values of Q are shown. The viscoelastic layers are 3 and 7 and the other layers are 
constrained to be elastic. This aids in discerning what the effects are of an individual viscoelastic 
on a synthetic trace. 
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Fig. 4. The same as Figure 3 with the large first primary arrival removed to give a better view of 
what occurs when anelasticity is introduced into synthetic trace computation. The time grid lines 
are to indicate that there is no introduction of acausal effects. 


