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ABSTRACT 

An update is presented on finding faster and or more accurate implementations of 
differentiator filters in the sampled domain (space or time). A previous work (Bancroft 
and Geiger, 1997) is reviewed, a description of the recursive filter is provided, and a 
theoretical derivation of the ideal filter is presented. 

INTRODUCTION AND REVIEW 

The differentiation of a long sequence (say ( ) ,  where    a i N i N− ≤ ≤ ) is accurately 

applied in the frequency domain ( ( )  D f j= ⋅ ) by applying a / 2π  or ninety–degree 

phase–shift with an amplitude scaling that is proportional to the frequency. In the 

sampled domain the derivative of a(i) is ( ) ,  where  d i N i N− ≤ ≤ . The derivative at 

location n, (dn), may be approximated by a forward difference  

 ( )1n forward n nd a a− += − , (1) 

or a backward difference  

 ( )1n backward n nd a a− −= − . (2) 

The backward difference may also be defined by shifting the location of the derivative to 
use the same inputs as the forward method. We then have  

 ( )1 1n backward n nd a a+ − += − , (3) 

These methods are fast and usually their performance is good enough for most 
applications. The forward and backward methods are crude in that the derivative should be 
located at the midpoint between the two selected samples. Since this is not possible with a 
defined sequence, it is located at either a forward or backward location. Averaging these 
two estimates of equations (1) and (3) we start with 
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to give a better result that is referred to as the central-difference differentiator, i.e., 

 ( )1 1

2
n n

n

a a
d + −−

= . (5) 

This result is now centred at n, but its wider aperture requires the input sequence to be 
sampled at a rate that is at least twice that defined by the Nyquist criteria. Examples of 
these differentiators are taken from Bancroft and Geiger (1997) and show in Figure 1 the 
spectrums with the amplitudes represented by a solid line, and the phase by a dashed line. 
The phase is in radians, and the frequency normalised to the sampling frequency. Figure 1 
displays in a) the ideal spectrum, b) the backwards-difference spectrum, and c) the 
central-difference spectrum. 

Analysis of these figures indicate that a useful frequency range be limited to less than 
half the Nyquist frequency. A more accurate 5 point differentiator, (-0.15, 1, 0, -1, 0.15), 
that is not shown in the figures would slightly increase this range (Bancroft and Geiger, 
1997). 

Using the z-transform to design a recursive filter 

The forward-difference differentiator filter could also be defined using the “z” 
transform as 

 ( ) ( )1d z z= − , (6) 

and the backward definition 

 ( ) ( )1z d z z× = − . (7) 

Summing these two “z” equations gives 

 ( )( ) ( )1 2 1d z z z+ = − , (8) 

or the rational filter 
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This form can be expressed in the time domain as  

 ( )1 12n n n nd d a a− −+ = − , (10) 

or in the recursive form of  

 ( )1 12n n n nd a a d− −= − − , (11) 

where dn-1 is a feed-back term from the previous output. While this is an exact expression, 
is has implementation problems due to the pole at z=-1. This is resolved by including a 
damping factor r giving 

 ( )1 12n n n nd a ra rd− −= − − . (12) 

A damping factor r = 0.985 provides a reasonably constant phase shift over the entire 
frequency band and an amplitude scaling factor that is reasonably accurate to half the 
Nyquist frequency, as illustrated in Figure 1d 

The ideal differentiator in the sampled domain 

An ideal time domain form of the differential filter can be found by inverse 
transforming the ideal form that is defined in the frequency domain. This result is shown 
in Figure 2 where part a) shows a 512 point representation, and b) a close up view 
showing forty two points. In both these plots, the time zero (with zero amplitude) has 
been shifted towards the center of the trace for easier viewing. 
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c)         d) 

FIG. 1. The spectrum (amplitude and phase) of time domain filters that approximate the differential 
filter with a) the exact frequency domain filter, b) the two-point forward difference spectrum, c) the 
two-point centred difference spectrum, and d) the damped recursive spectrum (r = 0.985). The 
phase is in radians with the same scale as the amplitude, and the frequency range is normalised 
to the sampling frequency. 

Ideal Backward difference 

Central difference Recursive 
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a)         b) 

FIG. 2. The ideal time domain response of a differentiator filter that is defined in the Fourier 
transform domain with a) the complete filter, b) a close up showing the amplitudes at discrete 
locations. These displays have been shifted spatially with the zeroth sample at the centre and with 
zero amplitude. 

ESTIMATING THE TIME DOMAIN RESPONSE 

Interpolation 

A method for estimating the time domain coefficients of a differentiator was obtained 
using an interpolator. The interpolation of samples may be dependent on assumptions 
such as over-sampling the data at three or five times the rate defined by the Nyquist 
criterion. Now six to ten samples can reasonably define the shape of one period of the 
maximum frequency, and linear interpolation is usually sufficient. 

An accurate interpolator is defined by the bandwidth at the Nyquist frequency, i.e. half 
the sampling frequency. If we assume a boxcar shape in the frequency domain, where the 
amplitude is unity to the Nyquist frequency, then time domain interpolator becomes a 
sinx/x or sinc function. The sinc function has unity at zero time, and is then zero at all 
other sample locations where the sample interval is defined as π . A continuous 
interpolation of the discrete input samples is obtained by convolving with the continuous 
sinc function. 

The derivative in the time domain 

When obtaining the impulse response of a differentiator, we start with an input spike 
at zero time. The continuous function of this spike is then found by convolving it with the 
sinx/x operator, i.e. defining the spike in the continuous domain as the sinx/x operator. 
The differential operator can now be defined by taking the derivative of the sinx/x 
function. This is a straight forward derivative by parts (duv = udv + vdu), that gives 
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cos sin

xd x xx
dx x x

= −
 (13) 

The sinx/x function and its derivative are plotted in Figure 3. The derivative is plotted 
using the analytic function of equation and also by using the central difference operator. 
These plots overlie each other, but differences occur at the end points where the central 
difference is zeroed. 

The value of the differential operator is defined at the sample locations. In Figure 3 the 
sample location at n = 1 is identified and the value of the derivative operator identified by 
the dot. Dots also identify the amplitudes of other samples on the differential operator. A 
comparison of these amplitudes with those in Figure 2b, show the same amplitude shape. 

 

 

FIG. 3. Plot of the sinx/x operator and its derivative. The horizontal axis defines the sample 
number of the input array (not in radians). [SincFn.m] 
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Using a quadratic interpolator 

I will now simplify the interpolation to a quadratic equation that fits three consecutive 
points, and use the same concept as above by deriving the derivative of this quadratic 
equation. 

Assume three consecutive points with amplitudes P, Q, and R, and with the x origin 
defined at the central point, and unity increment between samples. We now fit a quadratic 
equation y(x) through these points, i.e. 

 ( ) 2y x ax bx c= + + . (14) 

When x = 0, it should be more than obvious that 

 c Q= . (15) 

When x = 1, R = a + b +Q, giving 

 a b R Q+ = − , (16) 

and when x = -1, P = a – b +Q, we have 

 a b P Q− = − . (17) 

From addition and subtraction, these last two equations give 

 2
R Pb −

=
 (18) 

 
2
2

P Q Ra − +
=

 (19) 

Our intuition should be hinting that we may have done extra work, but we now take the 
derivative of the quadratic equation (14) giving 

 
2dy ax b

dx
= +

. (20) 

However, we only want the derivative at x = 0, giving, 
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0 2x

dy R Pb
dx =

−
= = , (21) 

the same result as the central difference of equation (5). Higher order approximations are in 
the works that may give better solutions. 

CONCLUSIONS 

Conventional methods for estimating the derivative of a sequence were presented. A 
simple algebraic derivation of the exact time function of a differentiator filter was 
presented using the concepts of interpolation with a sinx/x operator. Another method 
using a quadratic equation to fit three samples was shown to be identical to the simple 
central difference method. 

COMMENTS 

This is basic material and I am sure it must be documented elsewhere; however, to 
date, I have not been able to identify any references. 

I use the term “perfect” for a filter if it is bound or there is a finite limit to its size, and 
“ideal” if a filter has an infinite response, but is designed with a large aperture. We note 
that the differentiator filter has infinite response and that the best we can do in the space 
domain is build an “ideal” filter.  

Differentiator filters with half–cycle delays may also be defined using software 
packages that define spectral shapes. These may be found in Rabiner and Gold (1975). 
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