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Depth imaging using slowness-averaged Kirchhoff extrapolators 

Hugh D. Geiger, Gary F. Margrave, Kun Liu, Pat F. Daley 

ABSTRACT 
Recursive Kirchhoff wavefield extrapolation in the space-frequency domain can be 

thought of as a simple convolutional filter that calculates a single output point at depth 
z+dz using a weighted summation of all input points within the extrapolator aperture at 
depth z. The desired velocity values for the extrapolator are the ones that provide the best 
approximation of the true phase (propagation time) of the seismic wavefield between the 
input points and the output point. Recursive Kirchhoff extrapolators can be designed to 
handle lateral variations in velocity in a number of ways: a PSPI-type extrapolator uses 
only the velocity at the output point, a NSPS-type extrapolator uses the velocities at the 
input points; a SNPS-type extrapolator incorporates two extrapolation steps of dz/2 where 
the first step uses the velocities at the input points (NSPS-type) and the second step uses 
the velocity at the output point (PSPI-type); while the Weyl-type extrapolator uses an 
average of the velocities between each input point and the output point. Here, we 
introduce the PAVG-type extrapolator, which uses velocity values calculated by an 
average of slowness along straight raypaths between each input point and the output 
point. A simple synthetic with a lateral step in velocity shows that the PAVG Kirchhoff 
extrapolator is very close to the exact desired response. Tests using the Marmousi 
synthetic data set suggest that the extrapolator behaviour is only one of many 
considerations that must be addressed for accurate depth imaging. Other important 
considerations include preprocessing, aperture size, taper width, and imaging condition. 

INTRODUCTION 
Prestack ‘wave equation’ depth imaging can be implemented as a shot-record 

migration, which combines recursive forward and backward wavefield extrapolation with 
an imaging condition (Figure 1). In shot-record migration, the recorded shot record is 
downward continued into the subsurface by backward wavefield extrapolation, a 
modelled shot is downward continued into the subsurface by forward wavefield 
extrapolation, and an image consisting of bandlimited estimates of subsurface reflectivity 
is extracted from the wavefields at each depth level. Kirchhoff extrapolators are 
implemented as a convolutional filter relating input points on one depth level to output 
points on the next depth level (Figure 2). Because the extrapolators do not vary with time, 
they can be implemented efficiently in the space-frequency domain. 

In a previous paper, we developed the theory of recursive Kirchhoff wavefield 
extrapolators (Margrave and Daley, 2001). Only a brief summary of the theory will be 
repeated here. Beginning with the Fourier integral operator expressions for the wavefield 
extrapolators: GPSPI (generalized phase shift plus interpolation), NSPS (nonstationary 
phase shift), and the Weyl operator (based upon a quantum mechanical idea in Weyl 
(1931)) (see Margrave and Ferguson, 1998, 1999, and Ferguson and Margrave 2001), 
expressions were derived for these three extrapolators in the space-frequency domain. An 
additional extrapolator - SNPS (symmetric nonstationary phase shift) - can be developed 
as a cascade of NSPS and GPSPI. As might be expected, these expressions turned out to 
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be Kirchhoff-style operators that accomplish a single wavefield extrapolation step rather 
than a complete migration. The only difference between the four operators, NSPS, 
GPSPI, SNPS, and Weyl, was found to be in they way they handle velocity. In papers 
that followed (Geiger et al. 2002; Margrave and Geiger, 2002), we applied Kirchhoff 
extrapolators to parallel 3D prestack depth imaging and to the extrapolation of poorly 
sampled wavefields acquired on surfaces with topography. 

For wavefield extrapolators, accuracy in phase is generally more important than 
accuracy in amplitude. The accumulated traveltime (or phase) along a path between a 
given input point and an ouput point is the integrated slowness. Our previous Kirchhoff 
extrapolators used only the velocities at the input or output points for the convolutional 
filter. A natural extension is to include the velocities at intermediate points, and average 
their slowness to achieve a better estimate of phase. In this paper, we introduce the 
PAVG or slowness averaged Kirchhoff extrapolator. The PAVG extrapolator is ideally 
suited to implementation in the space-frequency domain. For true-amplitude or relative-
amplitude-preserving imaging, the extrapolator is only one of a number of important 
considerations that can affect the accuracy of the final image. We also examine shot-
record preprocessing, source wavefield modelling, and the migration imaging condition. 
Finite difference modeling is used to gain insight into how these considerations might 
best be addressed. The best solutions are combined to create an image of the shallow 
portion of the Marmousi dataset, and in particular, to compare and evaluate the PAVG, 
PSPI and tapered PAVG Kirchhoff extrapolators. 

Recently, an alternate extrapolator scheme that takes advantage of average slowness 
has been proposed by Xu et al. (2003). They use a velocity adaptive coordinate transform 
(VACT) to remap the input data at each extrapolation step to new lateral coordinates with 
spacing proportional to a ratio of slowness over reference slowness. In the VACT 
domain, the classical constant-slowness phase-shift algorithm (Gazdag, 1978) can be 
efficiently applied to accurately extrapolate the data without dip limitation. An inverse-
VACT is then applied to remap the extrapolated data back to the original coordinate 
system. The method appears to be extremely accurate, with 2D impulse responses and 
postack migration results from the 2D SEG/EAGE salt model rivalling or exceeding the 
fidelity of generalized screen propagators (de Hoop et al, 2000). Unfortunately, it is not 
obvious that the simple coordinate-stretching VACT-transform suitable for 2D can be 
extended to 3D with the same accuracy. 

EXTRAPOLATOR COMPARISON 

A simple 2D synthetic was designed to show the differences between the five 
extrapolators (PSPI, NSPS, SNPS, Weyl, and PAVG). The results are shown in Figure 3. 
In Figure 3a two impulses are input at time 1s and propagated 200m through a 2D media 
with a vertical velocity step from 2000m/s (left) to 3000m/s (right). The exact two-way 
response is shown in Figure 3b. A good one-way extrapolator should approximate closely 
the following key features: first, the wavefield remains continuous at the step boundary, 
and second, it refracts to lower velocity (left) and higher velocity (right) as it crosses the 
boundary. 
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Figure 3c illustrates how PSPI uses the velocity at the output point to determine the 
traveltime from each input to output point, for both the space-frequency (Kirchhoff) and 
wavenumber-frequency domain implementations. The extrapolator response is shown in 
Figure 3d. Notice that the desired response is not observed. Although the wavefield has 
the correct refractive slope, it is discontinuous at the boundary. The response of the 
wavenumber-frequency domain PSPI implementation is shown in Figure 3e. The result is 
almost identical, except for spatial wraparound that is somewhat attenuated by using a 
complex velocity. 

Figure 3f illustrates how NSPS uses the velocity at the input points to determine the 
traveltime from each input to output point. The extrapolator response is shown in Figure 
3g. The desired response is not obtained, although the response obtained differs from the 
PSPI response. With NSPS, the wavefield is continuous at the boundary but has the 
incorrect refractive slope. The response of the wavenumber-frequency domain NSPS 
implementation is shown in Figure 3h. The result is almost identical to the space-
frequency domain NSPS result, except for spatial wraparound that is, again, somewhat 
attenuated by using a complex velocity. 

Figure 3i illustrates how SNPS is a cascade of PSPI followed by NSPS (or 
NSPS/PSPI). For a large step size like the 200m step used here, two wavefields appear at 
the boundary. For smaller step sizes SNPS can be shown to be more stable than either 
PSPI or NSPS. Only the wavenumber-frequency domain SNPS result is shown here. The 
space-frequency domain SNPS implementation is similar, but without the wraparound. 

Figure 3k illustrates how the Weyl extrapolator uses an average of the input and 
output velocities. As might be expected, the response (Figure 3l) is a combination of a 
smaller discontinuity (compared with PSPI), and a less incorrect refractive slope 
(compared with NSPS). 

Figure 3m illustrates how the new Kirchhoff PAVG extrapolator uses an estimate of 
the average slowness along the straight-ray travelpath from each input to output point. 
The extrapolator response is shown in Figure 3n. The wavefield is continuous at the 
boundary and the refractive slope is close to the exact desired response. For comparison, 
Figure 3o is a repeat of the exact result given previously in Figure 3b. 

In 2D, the average slowness along each raypath can be easily calculated as a 
difference between integrated slownesses. The multiple directions introduced in 3D 
complicate this simple approach. We have yet to implement an algorithm for estimation 
of 3D average-slowness, but plan to use a combination of fine grids near the input and 
output points with coarse grids in between. 

TOWARDS ACCURATE IMAGING IN DEPTH 
In this section, we examine four important considerations for accurate imaging in 

depth: 1) accurate extrapolators, 2) accurate shot modeling including amplitude effects of 
shot arrays, ghosting and near surface multiple effects, and near-surface variable velocity 
subsurface; 3) careful preprocessing of the shot-record to achieve a maximum bandwidth 
zero-phase wavelet with no time delay; and 4) a phase and amplitude stable imaging 
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condition. Kelly and Ren (2003) identify a fifth consideration that we do not address 
here: 5) conservation of vertical energy flux. We plan to investigate this for future 
implementations. The accuracy of extrapolators has been discussed in the previous 
section, where we suggest that a slowness averaged Kirchhoff extrapolator has phase 
closest to the ideal exact extrapolator, so we continue with considerations 2) through 4). 

For ‘true-amplitude’ or ‘relative-amplitude-preserving’ wave-equation depth 
migration, we seed the source function (including array effects) at depth using analytic 
Green’s functions. Unfortunately, it is difficult to incorporate short-period near surface 
multiples into the analytic Green’s functions. Instead, their effects are mitigated by 
preprocessing, or incorporated into the source wavelet. However, array effects might 
remain that result in inaccurate source modeling. Hopefully, these effects are reduced to 
the same level as other approximations inherent in depth imaging. Figure 4a show how 
analytic Green’s functions might be used to seed the source wavefield at depth 2dz. The 
source array is composed of monopoles with ghosting. The subsurface is constant 
velocity to the depth of the water. Figure 4b illustrates a more complicated situation that 
might arise with land data. The source array is composed of dipoles distributed over 
topography. In this case, the subsurface is variable velocity. Kelly and Ren (2003) 
suggest seeding such a source to a depth at a constant velocity representative of the near 
source, backward extrapolating the seeded source wavefield to the source location using 
the same constant velocity, then forward extrapolating through the variable velocity 
medium. Their tests suggest that this produces a good estimate of the forward 
extrapolated wavefield. We intend to test this concept against finite difference models. 

Figure 5 is an example a source wavefield for the Marmousi dataset, seeded at a depth 
of 24m as a zero-phase wavelet using analytic constant velocity Green’s functions, one 
for each of the sources and ghosted sources in Figure 4a. The upper portion of the 
wavelet in Figure 5a is wrapped in time. To optimize focusing, the 24 Hz zero-phase 
Ricker wavelet has been chosen to match the preprocessed data (see Figure 6). After 
propagation to 400m (Figure 5b), the wavefield is effectively zero-phase, but now 
includes amplitude variations and phase delays arising from propagation through the 
variable velocity Marmouis model. 

Finite difference modeling of the Marmousi near surface was used to get a good 
estimate of the effects of the source and receiver arrays, ghosting, and waterbottom 
multiples on the recorded wavelet (see Geiger and Daley, 2003). These effects cannot be 
easily accounted for using one-way propagators. Figure 6 shows how the input airgun 
wavelet (left) is modified by these effects. The resulting wavelets (right – one for normal 
incidence and one for 45º incidence) can be closely approximated by a zero-phase 
wavelet with a 60ms time delay. Figure 7 shows the results from finite difference 
modeling of an isolated Marmousi reflection event, before (left) and after (right) gap 
deconvolution with a 40ms gap and 200ms operator. A zero-phase whitening has also 
been applied. 

For optimal imaging, it is essential that the modeled source and the processed data are 
zero-phase and matched in bandwidth. Residual time delays or time advances on either 
side can lead to poor focusing and inaccurate imaging. In Figure 8 (left), excellent 
focusing is achieved for a point diffractor at x=0, z=200. The majority of the energy is 
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well focused at the desired image point, although a low clip value has been chosen to 
show migration and aperture artifacts. In Figure 8 (right), a 60ms time delay has been 
introduced into the receiver wavefield. It would be tempting to correct the ‘smile’ by 
adjusting the migration velocity model. 

The final piece of the puzzle is a good imaging condition. Following Zhang et al. 
(2002), we estimate reflectivity at each depth point using a cross-correlation of the 
downward continued source and receiver wavefields divided by an autocorrelation of the 
downward continued source wavefield. This stabilizes the phase of the estimator. Instead 
of a stability factor in the denominator, a mute is applied to the extrapolated wavefields 
based on a percentage of the total source energy at that depth level. This appears to do a 
good job of removing large estimates of reflectivity that arise when the source amplitude 
is small, and introduces less error than a stability factor. Kelly and Ren (2003) suggest a 
variety of other approaches that need to be tested against our approach. Our brief 
experience is that the dynamic mute produces excellent images. Further tests are required 
to examine the relative amplitude preserving characteristics of our approach. 

IMAGES OF MARMOUSI 
A shallow portion of the Marmousi model was chosen to test our approach to imaging 

(Figure 9). Although this portion contains a strong velocity contrast, multiple arrivals and 
wavefield refraction are minimal. Thus, it is not the ideal portion of the data to test our 
slowness averaged extrapolator. However, at these shallow depths (<=400m) the 
relatively long offsets (<=2575m) result in high angles of wavefield propagation (see 
Figure 9d). As per the discussions in the previous section, the shots are seeded within the 
water layer at 24m depth using analytic Green’s functions corresponding to an array of 
ghosted monopoles, each shot-record is preprocessed with a gap decon and static shift, 
and the two wavefields are imaged at depth after propagation using a crosscorrelation 
over autocorrelation imaging condition with stability mute. Each image is created as an 
unweighted sum of 49 prestack migrated shot records. The only difference between the 
various images is the type of extrapolator. 

Figure 9b is a Marmousi depth migration image using Kirchhoff PAVG (slowness-
averaged) extrapolator with 90° operator aperture (survey aperture bounded over distance 
4000m-5500m – no edge taper). Figure 9c is a Marmousi depth migration image using a 
Kirchhoff PSPI-type extrapolator with 90° aperture. The PAVG extrapolator appears to 
produce a slightly better image, with better continuity along the bright reflector on the 
right hand side, fewer artifacts to the upper right of the central bright reflector, and 
slightly better focusing of the small reflectivity steps in the shallow dipping events. 

Figure 9e is a Marmousi depth migration image using Kirchhoff PAVG (slowness-
averaged) extrapolator with 84.5° operator aperture with 1.75° taper (survey aperture 
bounded by distance 4000m-5500m – no edge taper), corresponding to a 31 sample 
convolution operator (10dx/5dx taper per dz each side). Steeper dips are not image 
correctly (circled). In a companion paper (Liu et al. 2003) we introduce a adaptive taper 
that should reduce the artifacts and errors associated with limited aperture extrapolators. 
The adapative taper extrapolators are currently being tested as part of Kun Liu’s MSC 
thesis research. 
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CONCLUSIONS 
In simple synthetic tests, the slowness-averaged (PAVG) Kirchhoff extrapolator 

exhibits superior phase behaviour compared with PSPI, NSPS, SNPS or Weyl 
extrapolators. For true amplitude imaging, the accuracy of the extrapolator is only one of 
many important factors. We address three additional factors: accurate preprocessing, 
source modeling, and the migration imaging condition. Initial results imaging the shallow 
portion of the Marmousi dataset suggest that the PAVG extrapolator is indeed the most 
accurate, but that careful attention needs to be paid to aperture tapering. 
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FIGURES 
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FIG. 1:a)-c) Wave equation depth migration = wavefield extrapolation + imaging condition. 
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FIG. 2: In constant velocity, 2D forward (light) and backward (dark) extrapolators sum over a 
hyperbola and output to a point. The extrapolators do not vary with time, and thus can be 
implemented efficiently in the space-frequency domain. 
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a)      b) 

Kirchhoff/k-f PSPI extrapolator
• velocity defined at output point
• wavenumber-frequency domain PSPI

has wrap-around that can also be
reduced using a complex velocity
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         e) 

FIG. 3:a) Two impulses are input at time 1s and propagated 200m through a media with a velocity 
step from 2000m/s (left) to 3000m/s (right). b) The exact two-way response shows the key 
features that a good one-way extrapolator should approximate closely: the wavefield is 
continuous at the step boundary, and refracts to lower velocity (left) and higher velocity (right). 
Note: reflections are not expected with one-way extrapolators. c) PSPI uses the velocity at the 
output point to determine the traveltime from each input to output point, for both the space-
frequency (Kirchhoff) and wavenumber-frequency domain implementations d) The wavefield is 
discontinuous at the boundary, but has the correct refractive slope. e) A wavenumber-frequency 
domain PSPI implementation with wraparound attenuated by using a complex velocity. 
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Kirchhoff/k-f NSPS extrapolator
• velocity defined at input points
• wavenumber-frequency domain NSPS

has wrap-around that can also be
reduced using a complex velocity
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f)      g) 
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         h) 

SNPS as cascaded k-f PSPI/NSPS
• velocity defined using input points

but output point formulation possible
• wavenumber-frequency domain SNPS

has wraparound that can reduced
using complex velocities
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i)      j) 

FIG. 3 (cont) f) NSPS uses the velocity at the input points to determine the traveltime from each 
input to output point. g) The wavefield is continuous at the boundary, but has the incorrect 
refractive slope. h) A wavenumber-frequency domain NSPS implementation with wraparound 
attenuated by using a complex velocity. i) SNPS is a cascade of PSPI followed by NSPS (or 
NSPS/PSPI). For a large step size like the 200m used here, two wavefields appear at the 
boundary. For smaller step sizes SNPS can be shown to be more stable than either PSPI or 
NSPS. Only the wavenumber-frequency domain SNPS result is shown here. The space-
frequency domain SNPS implementation is similar, without the wraparound. 
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Kirchhoff WEYL extrapolator
• velocity defined as average of

velocities at input and output points
• no wavenumber-frequency domain

equivalent for Weyl extrapolator
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k)      l) 

Kirchhoff averaged slowness
• velocity defined using average of

slownesses along straight ray path
• best performance of all extrapolators

based on kinematics and amplitudes
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m)      o) 
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         p) 

FIG. 3 (cont) k) The Weyl extrapolator uses an average of the input and output velocities. l) As 
might be expected, the result is a combination of a smaller discontinuity (compared with PSPI), 
and a less incorrect refractive slope (compared with NSPS). m) The Kirchhoff PAVG extrapolator 
uses an estimate of the average slowness along the straight-ray travelpath from each input to 
output point. n) The wavefield is continuous at the boundary and the refractive slope is close to 
the exact desired response. o) The exact response from Figure 3b) shown again for comparison. 
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FIG. 4. For ‘true-amplitude’ or ‘relative-amplitude-preserving’ wave-equation depth migration, the 
source function (including array effects) is seeded at depth using analytic Green’s functions. a) A 
marine data example using a monopole array with ghosting and a constant velocity subsurface 
(to depth of water). b) A land data example using a dipole array with topography and a variable 
velocity subsurface. 

 

a) 

 

b) 

FIG. 5: An example source wavefield for the Marmousi dataset. a) The wavefield is seeded at a 
depth of 24m as a zero-phase wavelet  using analytic constant velocity Green’s functions, one for 
each of the sources and ghosted sources in Figure 4a). The upper portion of the wavelet is 
wrapped in time. To optimize focusing, the 24 Hz zero-phase Ricker wavelet has been chosen to 
match the preprocessed data (see Figure 6). b) After propagation to 400m, the wavefield is 
effectively zero-phase, but now includes amplitude variations and phase delays arising from 
propagation through the variable velocity Marmouis model. 
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FIG. 6. The wavelet in the recorded data includes many effects, such as waterbottom multiples 
and ghosting, that cannot be easily accounted for using one-way propagators. For the Marmousi 
dataset, a finite difference model was used to determine how the input airgun wavelet (left) is 
modified by these effects. The resulting wavelet can be closely approximated by a zero-phase 
wavelet with a 60ms time delay. These observations guide the Marmousi preprocessing.  

 

FIG. 7. Finite difference modeling of an isolated Marmousi reflection event, before (left) and after 
(right) gap deconvolution  with a 40ms gap and 200ms operator. A zero-phase whitening has also 
been applied. 

 

FIG. 8. Optimal imaging is obtained when both the source wavefield and the receiver wavefield 
are true zero-phase, without time delay errors. On the left, excellent focusing is achieved for a 
point diffractor at x=0, z=200 (the low clip value shows migration and aperture artifacts). On the 
right, a 60ms time delay has been introduced into the receiver wavefield. It would be tempting to 
correct the ‘smile’ by adjusting the migration velocity model. 



Slowness-average Kirchhoff extrapolators 
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a)  

b)  

c)  

FIG. 9: a) Selected portion of upper 400m of the Marmousi velocity model. b) Marmousi depth 
migration image using Kirchhoff PAVG (slowness-averaged) extrapolator with 90° operator 
aperture (survey aperture bounded over distance 4000m-5500m – no edge taper). This and 
following figures an unweighted sum of 49 prestack migrated shot gathers, imaged with a 
stabilized deconvolution imaging condition. c) Marmousi depth migration image using a Kirchhoff 
PSPI-type extrapolator with 90° aperture. 
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d)  

 

e)  

FIG. 9 (cont): d) Upper 400m portion of the Marmousi reflectivity model (same as 9a), calculated 
as zero-offset vertical incidence reflectivity. For prestack data, specular reflections off of a 
moderately steep dipping event can demand accurate high-angle wavefield propagation, as 
shown by a possible raypath from source to reflector to receiver. e) Marmousi depth migration 
image using Kirchhoff PAVG (slowness-averaged) extrapolator with 84.5° operator aperture with 
1.75° taper (survey aperture bounded by distance 4000m-5500m – no edge taper), 
corresponding to a 31 sample convolution operator (10dx/5dx taper per dz each side). Steeper 
dips are not image correctly (circled). 

 


